PTLsIim User’s Guide and Reference

The Anatomy of an x86-64 Out of Order
Superscalar Microprocessor

Matt T. Yourst

<yourst@yourst.com>

Revision 20070317
Second Edition

The latest version of PTLsim and this document are alwaysadla at:

www.ptlsim.org

(© 2007 Matt T. Yourskyourst@yourst.com>

The PTLsim software and manual are free software;
they are licensed under the GNU General Public Licenseorei

1

Contents

| PTLsim User’s Guide 9
1 Introducing PTLsim 10
1.1 Introducing PTLSImM 10
1.2 HIStOry o e 11
2 Getting Started 12
2.1 DocumentationMap. 12
2.2 Additional Resources 12
3 PTLsim Architecture 13
4 PTLsim Code Base 14
4.1 CodeBase OVervieW v i it 14
4.2 Common Libraries and Logic Design ARIs 17
4.2.1 General Purpose Macros. 18
4.2.2 Super Standard Template Library (SuperSTL). 18
4.2.3 Logic Standard Template Library (LogicSTL) 19
4.2.4 MiscellaneousCode 21
5 x86 Instructions and Micro-Ops (uops) 22
5.1 Micro-Ops (uops)and TransOpsS. v v v v i i e e e e e 22
5.2 Load-Execute-Store Operations i e 23
5.3 OperationSizes e 23
5.4 Flags Management and Register Renaming 24
5.5 X86-64. e 25
5.6 UnalignedLoadsandStores. o 25

5.7 Repeated String Operations 26
5.8 Checksand SkipBlocks. 26
5.9 ShiftsandRotates. 26
5.10 SSE SUpPOLt. e e 27
5.11 x87 FloatingPoint 27
5.12 Floating Point Unavailable Exceptions. 27
5.13 ASSISIS e 28
Decoder Architecture and Basic Block Cache 29
6.1 BasicBlockCache. 29
6.2 IdentifyingBasicBlocks. 29
6.3 Invalid Translations e 30
6.4 Self ModifyingCode. 31
6.5 Memory Management of the Basic Block Cache. 32
PTLsim Support Subsystems 34
7.1 Uoplmplementations 34
7.2 Configuration Parser. 34
7.3 MemoryManager e 35
7.3.1 MemoryPools. 35
7.3.2 Garbage Collection and Reclaim Mechanism 35
Statistics Collection and Analysis 37
8.1 PTLsim StatisticsDataStore. 37
8.1.1 Introduction 37
8.1.2 NodeAttributes 38
8.1.3 ConfigurationOptions. 39
8.2 PTLstats: Statistics Analysis and GraphingTools 39
8.3 ShnapshotSelection 40
8.4 Working with Statistics Trees: Collection, AveragingleSumming 40
8.5 Traversaland PrintingOptions.o 41
8.6 Table Generation. 41
8.6.1 Bargraph Generation. 42
8.7 Histogram Generation. 42

3

9

10

11

12

Benchmarking Techniques 43
9.1 Trigger Mode and other PTLsim Calls FromUserCode. 43
9.2 Notes on Benchmarking Methodology and “IPC”. 44
9.3 Simulation Warmup Periods 44
9.4 SequentialMode. 45
PTLsim Classic: Userspace Linux Simulation 46
Getting Started with PTLsim 47
10.1 Building PTLSIM e 47
10.2 Running PTLSIM. e 48
10.3 Configuration Options. e 48
10.4 Logging OptionNS o e 49
10.5 EventLog RingBuffer. 49
10.6 Simulation StartPoints 50
10.7 Simulation Stop Points 50
10.8 Statistics Collection 51
PTLsim Classic Internals 52
11.1 Low Level Startupand Injection 52
11.1.1 Startupon x86-64. 52
11.1.2 Startupon32-bitx86. 53
11.2 Simulator Startup e 53
11.3 Address Space Simulation L 54
11.4 DebuggingHints. 55
11.5 TiMINGISSUES. o e e e 56
11.6 External Signalsand PTLsim. 56
PTLsim/X: Full System SMP/SMT Simulation 57
Background 58
12.1 Virtual Machines and Full System Simulation. 58
12.2 XenOVEIVIEW. o o i e e e e e 60

4

13 Getting Started with PTLsim/X 63

13.1 Building PTLSIM/X. e 63
13.2 Running PTLSIM. 65
13.3 Booting Linuxunder PTLsim 65
13.4 Running Simulations: PTLetl. oL 67
13.5 PTLSIM/XOPtioNS. 69
13.6 Live Updates of Configuration Options 69
13.7 Command SCriptS e e 70
13.8 Working with Checkpoints. 70
13.9 The Natureof Time e e e 71
13.100ther Options e e 72
14 PTLsim/X Architecture Details 73
14.1 Basic PTLSIM/X Components i it e e e 73
14.1.1 Xen Maodifications. 73
14.1.2 PTLsim Monitor (PTLmMonN). i 74
14.2 PTLSIM COre. o e e e e e e 75
14.3 ImplementationDetails L 76
14.3.1 Page Translation 76
14.3.2 EXCEPLiONS. o 77
14.3.3 System Callsand Hypercalls. 77
14.3.4 EventChannels. 78
14.3.5 Privileged Instruction Emulation. 78
14.4 PTLcalls. 78
145 EventTrace Mode e 79
14.6 Multiprocessor SUPPOLt o e e e 80
[V Out of Order Processor Model 82
15 Introduction 83
15.1 OutOfOrderCore Features v i i ittt e e 83
15.2 ProcessorContexts e 84
15.3 PTLsim Machine/Core/Thread Class Hierarchy 85

5

16 Out Of Order Core Overview 86

16.1 EventLog RingBuffer. 87
17 Fetch Stage 88
17.1 Instruction Fetching and the Basic Block Cache 88
17.2 FetchQueue e e 88
18 Frontend and Key Structures 90
18.1 Resource Allocation. 90
18.2 Reorder BufferEntries. 90
1821 ROBStates o e 91
18.3 Physical Registers. 91
18.3.1 PhysicalRegisters 91
18.3.2 Physical RegisterFile. 91
18.3.3 Physical RegisterStates., 92
18.4 Load Store Queue Entries e 93
18.4.1 RegisterRenaming. e 93
18.4.2 External State. 94
18.5 Frontend Stages. e 95
19 Scheduling, Dispatch and Issue 96
19.1 Clustering and Issue Queue Configuration 96
19.2 Cluster Selection. e 97
19.3 Issue Queue Structure and Operation. 97
19.3.1 Implementation 99
19.3.2 OtherDesigns. i e 99
19.4 ISSUE. o e 99
20 Speculation and Recovery 101
20.1 Misspeculation Cases. 101
20.2 Redispatch. e 101
20.2.1 RedispatchProcess. 101
20.2.2 Deadlock Recovery. 102
20.2.3 Statistical Counters. 102

20.3 Annulment L e, 103

20.3.1 Branch Mispredictions 103
20.3.2 AnnulimentProcess. 103
21 Load Issue 105
21.1 Address Generation. e 105
21.2 Store Queue Check and Store Dependencies 106
21.3 DataExtraction. e 106
21.4 CacheMissHandling 107
22 Stores 108
22.1 Storeto Store ForwardingandMerging. L. 108
22.2 SplitPhase Stores. e 109
22.2.1 Load Queue Search (AliasCheck) 109
22.2.2 Store Queue Search (MergeCheck) 109
23 Forwarding, Wakeup and Writeback 111
23.1 Forwarding and the Clustered Bypass Network 111
23.2 Writeback. 112
24 Commitment 113
24.1 Introduction. 113
24.2 Atomicity of x86 instructions L 113
24.3 Commitment L e 113
24.4 Additional Commit Actions for Full SystemUse 114
24.5 Physical Register Recycling Complications. 115
24.5.1 Problem Scenarioso 115
24.5.2 ReferenceCounting 115
24.5.3 Hardware Implementation 116
24.6 Pipeline Flushesand Barriers oo 116
25 Cache Hierarchy 118
25.1 General Configurable Parameters. 118
25.2 Initiatinga Cache Miss 119
25.3 FilingaCache Miss. e 120
25.4 Translation Lookaside Buffers oL 121

26 Branch Prediction 122

26.1 Introduction. e 122
26.2 Conditional Branch Predictor. 123
26.3 Branch TargetBuffer. 123
26.4 Return Address Stack. 124
V Appendices 125
27 PTLsim uop Reference 126
28 Performance Counters 169
28.1 General. 169
28.2 SUMMAIY o e e e e e e 169
28.3 Simulator. e 170
28.4 DeCoder. e 171
28.5 OutofOrderCore o e 172
28.6 Cache Subsystem. e 177
28.7 External Events 182

Part |

PTLsim User’s Guide

Chapter 1

Introducing PTLsIm

1.1 Introducing PTLsim

PTLsim is a state of the art cycle accurate microprocessor simuat virtual machine for the
x86 and x86-64 instruction sets. PTLsim models a modernrsaakar out of order x86-64 com-
patible processor core at a configurable level of detailirapfyjom full-speed native execution on
the host CPU all the way down to RTL level models of all key fifpestructures. In addition, the
complete cache hierarchy, memory subsystem and suppbdidgvare devices are modeled with
true cycle accuracy. PTLsim supports the full x86-64 inginn set of the Pentium 4+, Athlon 64
and similar machines with all extensions (x86-64, SSE/3SEE3, MMX, x87). It is currently
the only tool available to the public to support true cyclewaate modeling of real x86 microar-
chitectures.

PTLsim is very different from most cycle accurate simulat@ecause it runs directly on the same
platform it is simulating (an x86 or x86-64 machine, typlgalinning Linux), it is able to switch in
and out of full out of order simulation mode and native x86 864 mode at any time completely
transparent to the running user code. This lets users quyickfile a small section of the user code
without the overhead of emulating the uninteresting pamsl enables automatic debugging by
finding the divergence point between a real reference maamnd the simulation.

PTLsim comes in two flavors. The classic version runs any i8B»#h64-bit single threaded
userspace Linux application. We have successfully run & arday of programs under PTLsim,
from typical benchmarks to graphical applications and oekveervers.

PTLsim/X runs on the bare hardware and integrates with Xgretwsor, allowing it to provide
full system x86-64 simulation, multi-processor and mthtieading support (SMT and multi-core
models), checkpoints, cycle accurate virtual device tgmrodels, deterministic time dilation, and
much more, all without sacrificing the speed and accuraograntt in PTLsim’s design. PTLsim/X
makes it possible to run any Xen-compatible operating systeder simulation; we have success-
fully booted arbitrary Linux distributions and industrastiard applications and benchmarks under
PTLsim/X.

Compared to competing simulators, PTLsim provides exthghigh performance even when run-
ning in full cycle accurate out of order simulation mode. dugh extensive tuning, cache profiling

10

and the use of x86 specific accelerated vector operationsnatraictions, PTLsim significantly
cuts simulation time compared to traditional research kiows. Even with its optimized core,
PTLsim still allows a significant amount of flexibility for sg experimentation through the use of
optimized C++ template classes and libraries suited tolsypmous logic design.

1.2 History

PTLsim was designed and developed by Matt T. Yosysirst@yourst.com> with its beginnings
dating back to 2001. The main PTLsim code base, includingtitef order processor model, has
been in active development since 2003 and has been usedigrtgrby our processor design
research group at the State University of New York at Bingtoenin addition to hundreds of
major universities, industry research labs and severdlkmelvn microprocessor vendors.

PTLsim is not related to other legacy simulators. It is oupdnthat PTLsim will help micropro-
cessor researchers move to a contemporary and widely usteddtion set (x86 and x86-64) with
readily available hardware implementations. This will\pd@ a new option for researchers stuck
with simulation tools supporting only the Alpha or MIPS basestruction sets, both of which
have since been discontinued on real commercially availabtdware (making co-simulation im-
possible) with an uncertain future in up to date compiletdbains.

The PTLsim software and this manual are free software, $iedrunder the GNU General Public
License version 2.

11

Chapter 2

Getting Started

2.1 Documentation Map

This manual has been divided into several parts:

e Partl introduces PTLsim, reviews the x86 architecture, and desePTLsim’s implemen-
tation of x86 in terms of uops, microcode and internal strres.

e Partll describes the use and implementation of userspace PTLsim.
— If you simply want tousePTLsim, this part starts with an easy to folldwtorial
e Partlll describes the use and implementation of full system PTR&im/

— If you simply want tousefull system PTLsim/X, this part starts with an easy to follow
tutorial

e PartlV details the design and implementation of the PTLsim out dépsuperscalar core
model

— Read this part if you want to understand and modify PTLsimsad order core.

e PartV is a reference manual for the PTLsim internal uop instrucset, the performance
monitoring events the simulator supports and a variety le¢iotechnical information.

2.2 Additional Resources

The latest version of PTLsim and this document are alwaysadle at the PTLsim web site:

http://www.ptlsim.org

12

Chapter 3

PTLsim Architecture

13

Chapter 4

PTLsim Code Base

4.1 Code Base Overview

PTLsim is written in C++ with extensive use of x86 and x86-6Hnie assembly code. It must be
compiled with gcc on a Linux 2.6 based x86 or x86-64 machire C++ variant used by PTLsim
is known as Embedded C++. Essentially, we only use the featfiound in C, but add templates,
classes and operator overloading. Other C++ features sulidden side effects in constructors,
exception handling, RTTI, multiple inheritance, virtua¢thods (in most cases), thread local stor-
age and so on are forbidden since they cannot be adequatdlplted in the embedded “bare
hardware” environment in which PTLsim runs, and can resuftaor performance. We have our
own standard template library, SuperSTL, that must be uspthce of the C++ STL.

Even though the PTLsim code base is very large, it is wellmmgal and structured for extensibil-
ity. The following section is an overview of the source fileslaubsystems in PTLsim:

e PTLsim Core Subsystems:

— ptlsimcpp andpt| si m h are responsible for general top-level PTLsim tasks and
starting the appropriate simulation core code.

— uopi npl . cpp contains implementations of all uops and their variatidhBLsim im-
plements most ALU and floating point uops in assembly langsagas to leverage the
exact semantics and flags generated by real x86 instrucgom® most PTLsim uops
are so similar to the equivalent x86 instructions. When atedmpn a 32-bit system,
some of the 64-bit uops must be emulated using slower C++. code

— pt | hwdef . cpp andpt | hwdef . h define the basic uop encodings, flags and registers.
The tables of uops might be interesting to see how a moderpr@@ssor is designed
at the microcode level. The basic format is discussed ini@eétl; all uops are
documented in Sectia®y.

— seqcor e. cpp implements the sequential in-order core. This is a striftthctional
core, without data caches, branch prediction and so fahpurpose is to provide fast
execution of the raw uop stream and debugging of issues hatli¢coder, microcode
or virtual hardware rather than a specific core model.

14

e Decoder, Microcode and Basic Block Cache:

— decode- cor e. cpp coordinates the translation from x86 and x86-64 into uo@snm
tains the basic block cache and handles self modifying dodaljdation and other x86
specific complexities.

— decode- f ast . cpp decodes the subset of the x86 instruction set used by 95% of al
instructions with four or fewer uops. It should be considéie “fast path” decoder in
a hardware microprocessor.

— decode- conpl ex. cpp decodes complex instructions into microcode, and provides
most of the assists (microcode subroutines) required byn@éhines.

— decode- sse. cpp decodes all SSE, SSE2, SSE3 and MMX instructions

— decode- x87. cpp decodes x87 floating point instructions and provides the@ated
microcode

— decode. h contains definitions of the above functions and classes.
e Out Of Order Core:

— ooocor e. cpp is the out of order simulator control logic. The microarektural
model implemented by this simulator is the subject of Part

— ooopi pe. cpp implements the discrete pipeline stages (frontend anddralkof the
out of order model.

— oooexec.cppmplements all functional units, load/store units and ésgueue and re-
play logic

— ooocor e. h defines most of the configurable parameters for the out ofr @ale not
intrinsic to the PTLsim uop instruction set itself.

— dcache. cpp anddcache. h contain the data cache model. At present the full L1/L2/L&tm
hierarchy is modeled, along with miss buffers, load fill resfuqueues, ITLB/DTLB
and bus interfaces. The cache hierarchy is very flexible gordtion wise; it is de-
scribed further in SectioB5.

— branchpr ed. cpp andbr anchpr ed. h is the branch predictor. By default, this is set
up as a hybrid bimodal and history based predictor with wericustomizable parame-
ters.

e Linux Hosted Kernel Interface:

— ker nel . cppandker nel . his where all the virtual machine "black magic" takes place
to let PTLsim transparently switch between simulation aative mode and 32-bit/64-
bit mode (or only 32-bit mode on a 32-bit x86 machine). In gahgou should not
need to touch this since it is very Linux kernel specific andksat a level below the
standard C/C++ libraries.

— | owl evel - 64bi t. Scontains 64-bit startup and context switching code. PTLestm
ecution starts here if run on an x86-64 system.

15

— | owl evel - 32bi t. Scontains 32-bit startup and context switching code. PTLestm
ecution starts here if run on a 32-bit x86 system.

— i nj ect code. cpp is compiled into the 32-bit and 64-bit code injected into tiget
process to map thatlsim binary and pass control to it.

— | oader . his used to pass information to the injected boot code.
e PTLsim/X Bare Hardware and Xen Interface:

— pt 1 xen. cpp brings up PTLsim on the bare hardware, dispatches trapsésmiipts,
virtualizes Xen hypercalls, communicates via DMA with thELBim monitor process
running in the host domain 0 and otherwise serves as thelk@drR&Lsim’s own mini
operating system.

— ptl xen-nenory. cpp is responsible for all page based memory operations within
PTLsim. It manages PTLsim’s own internal page tables anghysical memory map,

and services page table walks, parts of the x86 microcodarerdory-related Xen
hypercalls.

— ptl xen-events. cpp provides all interrupt (VIRQ) and event handling, manages
PTLsim’s time dilation technology, and provides all timelavent related hypercalls.

— pt | xen- conmon. cpp provides common functions used by both PTLsim itself and
PTLmon.

— pt | xen. h provides inline functions and defines related to full sysERhsim/X.

— pt | non. cpp provides the PTLsim monitor process, which runs in domaimd ia-
terfaces with the PTLsim hypervisor code inside the targetain to allow it to com-
municate with the outside world. It uses a client/servehidéecture to forward control
commands to PTLsim using DMA and Xen hypercalls.

— xen-types. h contains Xen-specific type definitions

— ptlsi mxen-hypervisor.diff andptlsi mxen-tools.diff are patches that
must be applied to the Xen hypervisor source tree and the Xerspace tools, respec-
tively, to allow PTLsim to be injected into domains.

— ptl xen. | ds andpt | non. | ds are linker scripts used to lay out the memory image of
PTLsim and PTLmon.

— | ow evel - 64bi t - xen. S contains the PTLsim/X boot code, interrupt handling and
exception handling

— ptlctl.cppis a utility used within a domain under simulation to confglLsim

— ptlcalls.h provides a library of functions used by code within the tad@main to
control PTLsim.

e Support Subsystems:

— superstl.h, superstl.cpp andgl obal s. h implement various standard library
functions and classes as an alternative to C++ STL. Theswilis also contain a num-
ber of features very useful for bit manipulation.

16

— | ogi c. his alibrary of C++ templates for implementing synchronaagid structures
like associative arrays, queues, register files, etc. Isbase very clever features like
FullyAssociativeArray8bit , Which uses x86 SSE vector instructions to asso-
ciatively match and process ~16 byte-sized tags every cyidese classes are fully
parameterized and useful for all kinds of simulations.

— mm cpp is the PTLsim custom memory manager. It provides extrenady ihemory
allocation functions based on multi-threaded slab cackiing same technique used
inside Linux itself) and extent allocation, along with aditeonal physical page alloca-
tor. The memory manager also provides PTLsim’s garbageaah system, used to
discard unused or least recently used objects when altorsafail.

mat hl i b. cpp andmat hl i b. h provide standard floating point functions suitable for
embedded systems use. These are used heavily as part offth@ct®code.

kl i bc. cpp andkl i bc. h provide standard libc-like library functions suitable fese
on the bare hardware

syscal | s. cpp andsyscal | s. h declare all Linux system call stubs. This is also
used by PTLsim/X, which emulates some Linux system callsa@erporting easier.

confi g. cpp andconfi g. h manage the parsing of configuration options for each
user program. This is a general purpose library used by bottsim itself and the
userspace tools (PTLstats, etc)

— dat ast or e. cpp anddat ast or e. h manage the PTLsim statistics data store file struc-
ture.

e Userspace Tools:

— ptlstats. cppis a utility for printing and analyzing the statistics datars files in
various human readable ways.

— dst bui I d is a Perl script used to parse stats.h and generate the atatésinplate
(Section8)

— makeusage. cpp is used to capture the usage text (help screen) for linkitegRi Lsim

— cpui d. cpp is a utility program to show various data returned by the g@&d in-
struction. Run it under PTLsim for a surprise.

— gl i bc. cpp contains miscellaneous userspace functions

— ptlcalls.candptlcalls. hare optionally compiled into user programs to let them
switch into and out of simulation mode on their own. The cal | s. ofile is typically
linked with Fortran programs that can’t use regular C heéities.

4.2 Common Libraries and Logic Design APIs

PTLsim includes a number of powerful C++ templates, macnakfanctions not found anywhere
else. This section attempts to provide an overview of thesetsires so that users of PTLsim will
use them instead of trying to duplicate work we've alreadyedo

17

4.2.1 General Purpose Macros

The file globals.h contains a wide range of very useful definitions, functiond enacros we
have accumulated over the years, including:

e Basic data types used throughout PTLsim (erxg4for 64-bit words,waddr for words the
same size as pointers, and so on)

e Type safe C++ template based functions, includimg, max, abs, mux, etc.

e lterator macrosféreach)

e Template based metaprogramming functions includiéngthof (finds the length of any
static array)offsetof ~ (offset of member in structurebaseof (member to base of struc-
ture), andog2 (takes the base-2 log of any constant at compile time)

e Floor, ceiling and masking functions for integers and p@agrtwo (loor , trunc , ceil
mask, floorptr , ceilptr , maskptr , signext etC)

¢ Bit manipulation macrosb(t , bitmask , bits , lowbits , setbit , clearbit , assignbit).
Note that thevitvec template (see below) should be used in place of these matr@®wer
it is more convenient.

e Comparison functionsafigned , strequal , inrange , clipto)

e Modulo arithmetic 4dd_index_modulo , modulo_span , et al)

e Definitions of basic x86 SSE vector functions (exg6_cpu_pcmpeqgb et al)
¢ Definitions of basic x86 assembly language functions (e@.bsf64 et al)
¢ A full suite of bit scanning functionssbindex , msbindex , popcount et al)

e Miscellaneous functionsafraycopy |, setzero , etc)

4.2.2 Super Standard Template Library (SuperSTL)

The Super Standard Template Library (SuperSTL) is an iate@++ library we use internally
in lieu of the normal C++ STL for various technical and prefdral reasons. While the full
documentation is in the commentssafperstl.h andsuperstl.cpp , the following is a brief
list of its features:

e |/O stream classes familiar from Standard C++, includsirgam andostream . Unique to

SuperSTL is how the comma operator (*,”) can be used to separbst of objects to send
to or from a stream, in addition to the usual C++ insertionrafm (“<<”).

e Toread and write binary data, tiustream andodstream classes should be used instead.

18

String buffer tringbuf) class for composing strings in memory the same way theyavoul
be written to or read from asstream Or istream

String formatting classesistring , hexstring , padstring , bitstring , bytemaskstring
floatstring) provide a wrapper around objects to exercise greateraarithow they are
printed.

Array (array) template class represents a fixed size array of objectse$isentially a simple
but very fast wrapper for a C-style array.

Bit vector pitvec) is a heavily optimized and rewritten version of the Stadda#+ bitset
class. It supports many additional operations well suitelbgic design purposes and em-
phasizes extremely fast branch free code.

Dynamic Array @ynarray) template class provides for dynamically sized arrayskstand
other such structures, similar to the Standard @alarray class.

Linked list node stink) template class forms the basis of double linked list stmast
in which a single pointer refers to the head of the list.

Queue list nodequeuelink) template class supports more operations thsaimk and
can serve as both a node in a list and a list head/tail header.

Index referenceirfdexref) is a smart pointer which compresses a full pointer into an in
dex into a specific structure (made unique by the templatanpaters). This class behaves
exactly like a pointer when referenced, but takes up muchdpace and may be faster. The
indexrefnull class adds support for storing null pointers, whiakexref lacks.

Hashtable class is a general purpose chaining based hash table witlcasiggurable key
hashing and management via add-on template classes.

SelfHashtable class is an optimized hashtable for cases where objectaindheir own
keys. Its use is highly recommended insteadiaxhtable

ChunkList class maintains a linked list of small data items, but packsyrof these items
into a chunk, then chains the chunks together. This is the caahe-friendly way of main-
taining variable length lists.

CRc32calculation class is useful for hashing

CycleTimer is useful for timing intervals with sub-nanosecond prexisusing the CPU
cycle counter (discussed in Sectibh.5).

4.2.3 Logic Standard Template Library (LogicSTL)

The Logic Standard Template Library (LogicSTL) is an intdiydeveloped add-on to SuperSTL
which supports a variety of structures useful for modelieguential logic. Some of its primitives
may look familiar to Verilog or VHDL programmers. While thellf documentation is in the
comments ofogic.h , the following is a brief list of its features:

19

latch template class works like any other assignable variabletHaunew value only be-
comes visible after thelock() method is called (potentially from a global clock chain).

Queue template class implements a general purpose fixed size qUdwequeue supports
various operations from both the head and the tail, and ial ifte modeling queues in
MIiCroprocessors.

Iterators forQueue objects such asreach_forward |, foreach_forward_from , foreach_forward_after
foreach_backward , foreach_backward from , foreach_backward_before

HistoryBuffer maintains a shift register of values, which when combingti wihash func-
tion is useful for implementing predictor histories and like.

FullyAssociativeTags template class is a general purpose array of associatigeirag
which each tag must be unique. This class uses highly eftioetching logic and sup-
ports pseudo-LRU eviction, associative invalidation aivdal indexing. It forms the basis
for most associative structures in PTLsim.

FullyAssociativeArray pairs aFullyAssociativeTags object with actual data values to
form the basis of a cache.

AssociativeArray divides aFullyAssociativeArray into sets. In effect, this class can
provide a complete cache implementation for a processor.

LockableFullyAssociativeTags , LockableFullyAssociativeArray andLockableAssociativeArray
provide the same services as the classes above, but supgong lines into the cache.

CommitRollbackCache leverages theockableFullyAssociativeArray class to provide a
cache structure with the ability to roll back all changes enexdmemory (not just within this
object, but everywhere) after a checkpoint is made.

FullyAssociative Tags8bit andFullyAssociativeTags16bit work just likeFullyAssociativeTags
except that these classes are dramatically faster wheg sisiall 8-bit and 16-bit tags. This

is possible through the clever use of x86 SSE vector instmugto associatively match and
process 16 8-bit tags or 8 16-bit tags every cycle. In additibese classes support fea-
tures like removing an entry from the middle of the array whibmpacting entries around

it in constant time. These classes should be used in placallgAssociativeTags

whenever the tags are small enough (i.e. almost all tagpekmememory addresses).

FullyAssociative TagsNbitOneHot is similar toFullyAssociative TagsNbit , but the user
must guarantee that all tags are unique. This property id ts@erform extremely fast
matching even with long tags (32+ bits). The tag data isetrigcross multiple SSE vectors
and matched in parallel, then a clever adaptation of the sliabsolute-differences SSE
instruction is used to extract the single matching elemiéang) in O(1) time.

20

4.2.4 Miscellaneous Code

The out of order simulator, ooocore.h, contains severaakele classes, including:

e IssueQueue template class can be used to implement all kinds of broadzeed issue
queues

e StateList andListOfStateLists is useful for collecting various lists that objects can be
on into one structure.

21

Chapter 5

X86 Instructions and Micro-Ops (uops)

5.1 Micro-Ops (uops) and TransOps

PTLsim presents to the target code a full implementatiorhefx86 and x86-64 instruction set
(both 32-bit and 64-bit modes), including most user and &devel instructions supported by the
Intel Pentium 4 and AMD K8 microprocessors (i.e. all staddastructions, SSE/SSE2, x86-64
and most of x87 FP). At the present stage of development,abemajority of all userspace and
32-bit/64-bit privileged instructions are supported.

The x86 instruction set is based on the two-operand CISCeagiraf load-and-compute and load-
compute-store. However, all modern x86 processors (ituBTLsim) do not directly execute
complex x86 instructions. Instead, these processorslétansach x86 instruction into a series
of micro-operationsuyopg very similar to classical load-store RISC instructionsopld can be
executed very efficiently on an out of order core, unlike x&&ructions. In PTLsim, uops have
three source registers and one destination register. Tlagygenerate a 64-bit result and various
x86 status flags, or may be loads, stores or branches.

The x86 instruction decoding process initially generatasdlated uopsransop3, which have a
slightly different structure than the true uops used in tteegssor core. Specifically, sources and
destinations are represented as un-renamed architectgiaters (or special temporary register
numbers), and a variety of additional information is atetko each uop only needed during the
renaming and retirement process. TransOps (representie byansOp structure) consist of the
following:

e som: Start of Macro-Op. Since x86 instructions may consist oftiple transops, the first
transop in the sequence hassiten bit set to indicate this.

e eom: End of Macro-Op. This bit is set for the last transop in a gix86 instruction (which
may also be the first uop for single-uop instructions)

e bytes : Number of bytes in the corresponding x86 instruction (1-THhe sameytes field
value is present in all uops comprising an x86 instruction.

22

e opcode : the uop (not x86) opcode
e size : the effective operation size (0-3, for 1/2/4/8 bytes)

e cond: the x86 condition code for branches, selects, sets, etdo&ds and stores, this field
is reused to specify unaligned access information as desttater.

e setflags : subset of the x86 flags set by this uop (see Se&idn

e internal : set for certain microcode operations. For instance, |leadb stores marked
internal access on-chip registers or buffers invisibled6 &ode (e.g. machine state registers,
segmentation caches, floating point constant tables, etc).

e rd,ra,rb,rc: the architectural source and destination registers (seed®18.4.])

e extshift : shift amount (0-3 bits) used for shifted adds (x86 memoresising and LEA).
Therc operand is shifted left by this amount.

e cachelevel : used for prefetching and non-temporal loads and stores

e rbimm andrcimm : signed 64-bit immediates for the rb and rc operands. Thesselected
by specifying the special constaREG_immin therb andrc fields, respectively.

e riptaken : for branches only, the 64-bit target RIP of the branch iférevtaken.

e ripseq : for branches only, the 64-bit sequential RIP of the brahdhwere not taken.

Appendix27 describes the semantics and encoding of all uops supportie P TLsim processor
model. The following is an overview of the common featuretheke uops and how they are used
to synthesize specific x86 instructions.

5.2 Load-Execute-Store Operations

Simple integer and floating point operations are fairlyigtrtorward to decode into loads, stores
and ALU operations; a typical load-op-store ALU operatioifi wonsist of a load to fetch one

operand, the ALU operation itself, and a store to write theulte The instruction set also im-

plements a number of important but complex instruction$ izarre semantics; typically the

translator will synthesize and inject into the uop streamaip uops for more complex instruc-

tions.

5.3 Operation Sizes

Most x86-64 instructions can operate on 8, 16, 32 or 64 bita given register. For 8-bit and
16-bit operations, only the low 8 or 16 bits of the destinatiegister are actually updated; 32-bit
and 64-bit operations are zero extended as with RISC aothits. As a result, a dependency on

23

the old destination register may be introduced so mergimgbeaperformed. Fortunately, since
x86 features destructive overwrites of the destinatiomsteg(i.e. thed andra operands are the
same), thea operand is generally already a dependency. Thus, the PTligiencoding reserves

2 bits to specify the operation size; the low bits of the nesulieare automatically merged with
the old destination value (ira) as part of the ALU logic. This applies to tmeov uop as well,
allowing operations likerhov al,bl " in one uop. Loads do not support this mode, so loads into
8-bit and 16-bit registers must be followed by a separateuop to truncate and merge the loaded
value into the old destination properly. Fortunately tlsis\dt necessary when the load-execute
form is used with 8-bit and 16-bit operations.

The x86 ISA defines some bizarre byte operations as a camjive the ancient 8086 architec-
ture; for instance, it is possible to address the seconddiytgany integer registers as a separate
register (i.e. aah, bh, ch, dh). Themask uop is used for handling this rare but important set of
operations.

5.4 Flags Management and Register Renaming

Many x86 arithmetic instructions modify some or all of th@pessor's numerous status and con-
dition flag bits, but only 5 are relevant to normal executidaro, Parity, Sign, Overflow, Carry. In
accordance with the well-known “ZAPS rule”, any instructithat updates any of the Z/P/S flags
updates all three flags, so in reality only three flag entiteesd to be tracked: ZPS, O, F (“ZAPS”
also includes an Auxiliary flag not accessible by most modeer instructions; it is irrelevant to
the discussion below).

The x86 flag update semantics can hamper out of order exacstiowe use a simple and well
known solution. The 5 flag bits are attached to each resulphgsical register (along witimvalid
andwaiting bits used by some cores); these bits are then consumed altnghe actual result
value by any consumers that also need to access the flagsouliddbe noted that not all uops
generate all the flags as well as a 64-bit result, and some ardpsgyenerate flags and no result
data.

The register renaming mechanism is aware of these semaantit$racks the latest x86 instruction
in program order to update each set of flags (ZAPS, C, O); flogvs branches and other flag
consumers to directly access the result with the most rgregram-ordered flag updates yet still
allows full out of order scheduling. To do this, x86 procassmaintain three separate rename
table entries for the ZAPS, CF, OF flags in addition to thestegirename table entry, any or all of
which may be updated when uops are renamed. TFaesOp structure for each uop has a 3-bit
setflags field filled out during decoding in accordance with x86 sentantheSETFLAG_ZF
SETFLAG_CKFSETFLAG_OPbits in this field are used to determine which of the ZPS, O, § fla
subsets to rename.

As mentioned above, any consumer of the flags needs to catsmost three distinct sources:
the last ZAPS producer, the Carry producer and the Overflogywer. This conveniently fits into
PTLsim’s three-operand uop semantics. Various specias agpess the flags associated with an
operand rather than the 64-bit operand data itself. Branalveays take two flag sources, since in

24

x86 this is enough to evaluate any possible condition codeauation (thecond_code_to_flag_regs
array provides this mapping).

Various ALU instructions consume only the flags part of a seyphysical register; these include
addc (add with carry)cl /rcr (rotate carry)sel. cc (select for conditional moves) and so on.
Finally, thecollicc uop takes three operands (the latest producer of the ZAP@NGIOF flags)
and merges the flag components of each operand into a singlestias its result.

PTLsim also provides compound compare-and-branch uspsdcc andbr.and.cc); these
are currently used mostly in microcode, but a core could dyoally mergeCmPor TEST andJcc
instructions into these uops; this is exactly what the IQtete 2 and a few research processors
already do.

5.5 x86-64

The 64-bit x86-64 instruction set is a fairly straightfordi@xtension of the 32-bit 1A-32 (x86)
instruction set. The x86-64 ISA was introduced by AMD in 2@@ith its K8 microarchitecture;
the same instructions were subsequently plagiarized lgy Umder a different name (“EM64T”)
several years later. In addition to extending all integegiisters and ALU datapaths to 64 bits,
x86-64 also provides a total of 16 integer general purpogisters and 16 SSE (vector floating
and fixed point) registers. It also introduced several G&dhiress space simplifications, including
RIP-relative addressing and corresponding new addressougs, and eliminated a number of
legacy features from 64-bit mode, including segmentat®@D arithmetic, some byte register
manipulation, etc. Limited forms of segmentation are ptiflsent to allow thread local storage and
mark code segments as 64-bit. In general, the encoding 66486d x86 are very similar, with
64-bit mode adding a one byte REX prefix to specify additidnitd for source and destination
register indexes and effective address size. As a resuh, J@riants can be decoded by similar
decoding logic into a common set of uops.

5.6 Unaligned Loads and Stores

Compared to RISC architectures, the x86 architecture amois for its relatively widespread
use of unaligned memory operations; any implementationt rfisiently handle this scenario.
Fortunately, analysis shows that unaligned accesses ralg na the performance intensive parts
of a modern program (with the exception of certain media @semg algorithms). Once a given
load or store is known to frequently have an unaligned addiesan be preemptively split into
two aligned loads or stores at decode time. PTLsim does thisitially causing all unaligned
loads and stores to raise BnalignedAccess internal exception, forcing a pipeline flush. At this
point, the specialnaligned bit is set for the problem load or store uop in its translatesidblock
representation. The next time the offending uop is encoadtdt will be split into two parts very
early in the pipeline.
PTLsim includes special uops to handle loads and storessialitwo in this manner. Thel.lo
uop rounds down its effective addrelsé| to the nearest 64-bit boundary and performs the load.
25

Theld.hi uop rounds up td A + 8], performs another load, then takes as its third rc operand
the first (d.lo) load’s result. The two loads are concatenated into a 128xnid and the final
unaligned data is extracted. Stores are handled in a simdaner, witrst.lo andst.ni rounding
down and up to store parts of the unaligned value in adjackhitdblocks. Depending on the core
model, these unaligned load or store pairs access sepanadsffers for each half as if they were
independent.

5.7 Repeated String Operations

The x86 architecture allows for repeated string operatior@duding block moves, stores, com-
pares and scans. The iteration count of these repeatediopsrdepends on a combination of the
rex register and the flags set by the repeated operation (e.gparen To translate these instruc-
tions, PTLsim treats theep xxx instruction as a single basic block; any basic block in peegr
before the repeat instruction is terminated and the repadgdoded as a separate basic block. To
handle the unusual case where the repeat count is zero, la wbe¢see below) is inserted at the
top of the loop to protect against this case; PTLsim simplgasges the offending block if the
check fails.

5.8 Checks and SkipBlocks

PTLsim includes special uopshk.and.cc , chk.sub.cc) that compare two values or condition
codes and cause a special internal exception if the redultas TheSkipBlock internal exception
generated by these uops tells the core to literally annul@dls in this instruction, dynamically
turning it into a nop. As described above, this is useful tong operations where a zero count
causes all of the instruction’s side effects to be annull8anilarly, the AssistCheck internal
exception dynamically turns the instruction into an aséistthose cases where certain rare con-
ditions may require microcode intervention more compleantican be inlined into the decoded
instruction stream.

5.9 Shifts and Rotates

The shift and rotate instructions have some of the most t@z@mantics in the entire x86 instruc-
tion set: they may or may not modify a subset of the flags depgrah the rotation count operand,
which we may not even know until the instruction issues. Badishifts and rotates, these seman-
tics can be preserved by the uops generated, however \ariatiations are more complex. The
collcc uop is put to use here to collect all flags; the collected tasuhen fed into the shift or
rotate uop as itsc operand; the uop then replicates the precise x86 behavidugling rotates
using the carry flag) according to its input operands.

26

5.10 SSE Support

PTLsim provides full support for SSE and SSE2 vector floapogt and fixed point, in both
scalar and vector mode. As is done in the AMD K8 and Pentiuraeh &SE operation on a 128-bit
vector is split into two 64-bit halves; each half (possikbysisting of a 64-bit load and one or more
FPU operations) is scheduled independently. Because $5tdtions do not set flags like x86
integer instructions, architectural state managemenbeaestricted to the 16 128-bit SSE registers
(represented as 32 paired 64-bit registers). mxw@r (media extensions control and status register)
is represented as an internal register that is only read aitigmvby serializing microcode; since
the exception and status bits are “sticky” (i.e. only setiemecleared by hardware), this has no
effect on out of order execution. The processor’s floatinmtpanits can operate in either 64-bit
IEEE double precision mode or on two parallel 32-bit singkecgsion values.

PTLsim also includes a variety of vector integer uops usecbtestruct SSE2/MMX operations,
including packed arithmetic and shuffles.

5.11 x87 Floating Point

The legacy x87 floating point architecture is the bane of 8B processor vendors’ existence,
largely because its stack based nature makes out of ordeegwmiog so difficult. While there are
certainly ways of translating stack based instruction setsflat addressing for scheduling pur-
poses, we do not do this. Fortunately, following the Pentilirand AMD Athlon’s introduction,
x87 is rapidly headed for planned obsolescence; most mppications released within the last
few years now use SSE instructions for their floating poimdseeither exclusively or in all perfor-
mance critical parts. To this end, even Intel has relega@édbsxpport on the Pentium 4 and Core 2
to a separate low performance legacy unit, and AMD has océstix87 use in 64-bit mode. For this
reason, PTLsim translates legacy x87 instructions intaialsgd, program ordered and emulated
form; the hardware does not contain any x87-style 80-bitifiggooint registers (all floating point
hardware is 32-bit and 64-bit IEEE compliant). We have reatitittle to no performance problem
from this approach when examining typical binaries, whetely if ever still use x87 instructions
in compute-intensive code.

5.12 Floating Point Unavailable Exceptions

The x86 architecture specifies a mode in which all floatingipoperations (SSE and x87) will
trigger a Floating Point Unavailable excepti@xCEPTION_x86_fpu_not_avail , vector 0x7) if
the TS (task switched) bit in control regist@Rois set. This allows the kernel to defer saving the
floating point registers and state of the previously schestitiiread until that state is actually mod-
ified, thus speeding up context switches. PTLsim suppoidéature by requiring any commits
to the floating point state (SSE XMM registers, x87 registarany floating point related control
or status registers) to check thep.is_sse anduop.is_x87 bits in the uop. If either of these is
set, the pipeline must be flushed and redirected into theeskemit can save the FPU state.

27

5.13 Assists

Some operations are too complex to inline directly into tbp stream. To perform these instruc-
tions, a special uom(p : branch private) is executed to branch toaasistfunction implemented
in microcode. In PTLsim, some assist functions are impleéetas regular C/C++ or assembly
language code when they interact with the rest of the vimuathine. Examples of instructions
requiring assists include system calls, interrupts, samnag of integer division, handling of rare
floating point conditions, CPUID, MSR reads/writes, vasodB7 operations, any serializing in-
structions, etc. These are listed in %k&SIST xxx enum found irdecode.h .

Prior to entering an assist, uops are generated to loaREGeselfrip andREG_nextrip internal
registers with the RIP of the instruction itself and the Riterats last byte, respectively. This lets
the assist microcode correctly update RIP before returrongignal a fault on the instruction if
needed. Several other assist related registers, inclirRiiggarl, REG_ar2, REG_ar3, are used to
store parameters passed to the assist. These registerstaremtecturally visible, but must be
renamed and separately maintained by the core as if theypaeref the user-visible state.

While the exact behavior depends on the core model (out @rp&MT, sequential, etc), generally
when the processor fetches an assigt Uop), the frontend pipeline is stalled and execution waits
until thebrp commits, at which point an assist function within PTLsimadled. This is necessary
because assists are not subject to the out of order exeaugchanism; they directly update the
architectural registers on their own. In a real processeretlare slightly more efficient ways of
doing this without flushing the pipeline, however in PTLsissigts are sufficiently rare that the
performance impact is negligible and this approach sigmfiy reduces complexity. For the out
of order core, the exact mechanism used is described indBeéttia

28

Chapter 6

Decoder Architecture and Basic Block
Cache

6.1 Basic Block Cache

As described in SectioB.1, x86 instructions are decoded into transops prior to aaxatution
by the core. To achieve high performance, PTLsim maintaibasac block cach¢BB cache)
containing the program ordered translated utwansop sequence for previously decoded basic
blocks in the program. Each basic blo@dagicBlock structure) consists of up to 64 uops and
is terminated by either a control flow operation (conditipmaconditional, indirect branch) or a
barrier operation, i.e. a microcode assist (includingeystalls and serializing instructions).

6.2 ldentifying Basic Blocks

In a userspace only simulator, the RIP of a basic block’sygmbint (plus a few other attributes
described below) serves to uniquely identify that basickland can be used as a key in accessing
the basic block cache. In a full system simulator, the BB eatlust be indexed by much more
than just the virtual address, because of potential vifiage aliasing and the need to persistently
cache translations across context switches. The follofehds, in theRIPVirtPhysstructure, are
required to correctly access the BB cache in any full sysiemlstor or binary translation system
(128 bits total):

e rip: Virtual address of first instruction in BB (48 bits), sinceleedded RIP-relative con-
stants and branch encodings depend on this. Modern OS’smaagdslibraries and binaries
at the same addresses every time, so translation cachirsgnegffective across runs.

e mfnlo. MFN (Machine Frame Number, i.e. physical page frame numdikefiyst byte in
BB (28 bits), since we need to handle self modifying codelidasions based on physical
addresses (because of possible virtual page aliasing itipheypage tables)

29

e mfnhi: MFN of last byte in BB (28 bits), since a single x86 basic bl@ehn span up to
two pages. In pathological cases, it is possible to createp@ge tables that both map the
same MFN X at virtual address V, but map different MFNs atudltaddress V+4096. If an
instruction crosses this page boundary, the meaning ofnteuiction bytes on the second
page will be different; hence we must take into account bowsral pages to look up the
correct translation.

e Context info (up to 24 bits), since the uops generated deparbe current CPU mode and
CS descriptor settings

— use64: 32-bit or 64-bit mode? (encoding differences)
— kernel: Kernel or user mode?

— df: EFLAGS status (direction flag, etc)

— Other info (e.g. segmentation assumptions, etc.)

The basic block cache is always indexed usingrevirtPhys structure instead of a simple RIP.
To do this, therIPVirtPhys.rip field is set to the desired RIP, therPVirtPhys.update(ctx)

is called to translate the virtual address onto the two laygiage MFNs it could potentially span
(assuming the basic block crosses two pages).

Notice that the other attribute bitsse64 , kernel , df) mean that two distinct basic blocks may be
decoded from the exact same RIP on the same physical paggt(t)e uops in each translated basic
block will be different because the two basic blocks weraglated in a different context (relative
to these attribute bits). This is especially important f86)string move/compare/store/load/scan
instructions KIOVSBCMPSBSTOSB LODSB SCASBH, since the correct increment constants depend
on the state of the direction flag in the context in which the \B& used. Similarly, if a user
program tries to decode a supervisor-only opcode, coddlttheageneral protection fault handler
will be produced instead of the real uops produced only im&emode.

6.3 Invalid Translations

The BasicBlockCache.translate(ctx, rvp) function always returns aBasicBlock oObject,
even if the specified RIP was on an invalid page or some of thiuction bytes were invalid.
When decoding cannot continue for some reason, the decodgllysoutputs a microcode branch
to one of the following assists:

e ASSIST_INVALID_OPCODEWhen the opcode or instruction operands are invalid reddtvhe
current context.

e ASSIST_EXEC_PAGE_FAULWhen the specified RIP falls on an invalid page. This means a
page is marked as not present in the current page table atrteé®t decoding, or the page
is present but has its NX (no execute) bit set in the page @iihy. TheEXEC_PAGE_FAULT
assist is also generated when the page containing the RiPigsalid, but part of an in-
struction extends beyond that page onto an invalid page. dEceder tries to decode as

30

many instruction bytes as possible, but will inserteeC_PAGE_FAULBSSIist whenever it
determines, based on the bytes already decoded, that tlagsen of the instruction would
fall on the invalid page.

e ASSIST_GP_FAULTWhen attempting to decode a restricted kernel-only opcddiwwunning
in user mode.

Before redirecting execution to the kernel’'s exceptiondbamn theEXEC_PAGE_FAULMicrocode
verifies that the page in question is still invalid. This alga spurious page fault in the case where
an instruction was originally decoded on an invalid pagetleipage tables were updated after the
translation was first made such that the page is now valid. rWithis is the case, all bogus basic
blocks on the page (which were decoded into a cakkXxaC_PAGE_FAULTmust be invalidated,
allowing a correct translation to be made now that the pagalid. The page at the virtual address
after the page in question may also need to be invalidatdteindse where some instruction bytes
cross the page boundary.

6.4 Self Modifying Code

In x86 processors, the translation process is considenabig complex, because of self modifying
code (SMC) and its variants. Specifically, the instructigteb of basic blocks that have already
been translated and cached may be overwritten; these akldteons must be discarded. The x86
architecture guarantees that all code modifications wilviséle immediately after the instruc-
tion making the modification; unlike other architectures,‘mstruction cache flush” operation is
provided. Several kinds of SMC must be handled correctly:

e Classical SMC: stores currently in the pipeline overwritgen instructions that have already
been fetched into the pipeline and even speculatively égdaut of order;

¢ Indirect SMC: stores write to a page on which previouslystared code used to reside, but
that page is now being reused for unrelated data or new cdds.c@se frequently arises in
operating system kernels when pages are swapped in anadoutlfsk.

e Cross-modifying SMC: in a multiprocessor system, one @Bscoeoverwrites instructions
that are currently in the pipeline on some other core. Thest86dard is ambiguous here;
technically no pipeline flush and invalidate is requiredt@&ad, the cache coherence mecha-
nism and software mutexes are expected to prevent this case.

e External SMC: an external device uses direct memory ac@dd#\| to overwrite the phys-
ical DRAM page containing previously translated code. kuotty, this can happen while the
affected instructions are in the pipeline, but in practio@perating system would ever allow
this. However, we still must invalidate any translationstioa target page to prevent them
from being looked up far in the future.

31

To deal with all these forms of SMC, PTLsim associates a ydibit with every physical page
(this is unrelated to the “dirty” bit in user-visible pagéka entries). Whenever the first uop in
an x86 instruction (i.e. the “SOM”, start-of-macro-op u@@mmits, the current context is used
to translate its RIP into the physical page MFN on which iides, as described in Sectiém2

If the instruction’s length in bytes causes it to overlapooatsecond page, that high MFN is also
looked up (using the virtual addregp + 4096). If the dirty bits for either the low or high MFN
are set, this means the instruction bytes may have been ewddimetime after the time they were
last translated and added to the basic block cache. In thes tiae pipeline must be flushed, and
all basic blocks on the target MFN (and possibly the oveiilagppigh MFN) must be invalidated
before clearing the dirty bit. Technically the RIP-to-plogs translation would be done in the
instruction fetch stage in most core models, then simplsestas amiPVvirtPhys ~ structure inside
the uop until commit time.

The dirty bit can be set by several events. Obviously anyesiops will set the dirty bit (thus han-
dling the classical, indirect and cross-modifying casles) notice that this bit is not checked again
until the first uop in theextx86 instruction. This behavior is required because it isquthy legal
for an x86 store to overwrite its own instruction bytes, s tdoes not become visible until the
same instruction executes a second time (otherwise antenfoup of invalidations would occur).
Microcoded x86 instructions implemented by PTLsim itself dirty bits when their constituent
internal stores commit. Finally, DMA transfers and extémetes also set the dirty bit of any
pages touched by the DMA operation.

The dirty bit is only cleared when all translated basic bkake invalidated on a given page, and
it remains clear until the first write to that page. Howeveragtion is taken when additional basic
blocks are decoded from a page already marked as dirty. Tayss@em counterintuitive, but it
is necessary to avoid deadlock: if the page were invalidatedretranslated at fetch time, future
stages in a long pipeline could potentially still have referes to unrelated basic blocks on the
page being invalidated. Hence, all invalidations are ced@nd processed only at commit time.

Other binary translation based software and hardwesgel[l, 9, 12, 13] have special mechanisms
for write protecting physical pages, such that when a padk tkénslations is first written by
stores or DMA, the system immediately invalidates all tfatiens on that page. Unfortunately,
this scheme has a number of disadvantages. First, paterdgsit®implementationl8, 17, 16,
which we would like to avoid. In addition, our design elimies forced invalidations when the
kernel frees up a page containing code that’'s immediatedyvanitten with normal user data (a
very common pattern according to our studies). If that pageever executed again, any transla-
tions from it will be discarded in the background by the LRUaim&nism, rather than interrupting
execution to invalidate translations that will never beduisgain anyway. Fortunately, true classical
SMC is very rare in modern x86 code, in large part becausermagyoprocessors have slapped a
huge penalty on its use (particularly in the case of the Ben# and Transmeta processors, both
of which store translated uops in a cache similar to PTLsba%sic block cache).

6.5 Memory Management of the Basic Block Cache

The PTLsim memory manager (imm.cpp, see Sectioi.3for details) implements a reclaim mech-
anism in which other subsystems register functions thatgksd when an allocation fails. The

32

basic block cache registers a callbaaicache_reclaim() andBasicBlockCache::reclaim() :
to invalidate and free basic blocks when PTLsim runs out ahorg.

The algorithm used to do this is a pseudo-LRU design. Evesiclidock has #astused field that
gets updated with the current cycle number when®asicBlock::use(sim_cycle) is called
(for instance, in the fetch stage of a core model). The neckgorithm goes through all basic
blocks and calculates the oldest, average and nelwmsied cycles. The second pass then
invalidates any basic blocks that fall below this averagdegytypically around half of all basic
blocks fall in the least recently used category. This stnateas proven very effective in freeing up
a large amount of space without discarding currently hoicdascks.

Each basic block also has a reference coumtepunt , to record how many pointers or refer-
ences to that basic block currently exist anywhere insidesi?ii (especially in the pipelines of

core models). Th@asicBlock::acquire() andrelease() methods adjust this counter. Core
models should acquire a basic block once for every uop iniiipe within that basic block; the

basic block is released as uops commit or are annulled. $msie blocks may be speculatively
translated in the fetch stage of core models, this guaratiet live basic blocks currently in flight

are never freed until they actually leave the pipeline.

33

Chapter 7

PTLsIim Support Subsystems

7.1 Uop Implementations

PTLsim provides implementations for all uops in thgimpl.cpp file. C++ templates are com-
bined with gcc’'s smart inline assembler type selection trairgs to translate all possible permu-
tations (sizes, condition codes, etc) of each uop into figptimized code. In many cases, a real
x86 instruction is used at the core of each correspondingsunyplementation; code after the
instruction just captures the generated x86 condition dladgs, rather than having to manually
emulate the same condition codes ourselves. The code irepterg each uop is then called from
elsewhere in the simulator whenever that uop must be exégciNete that loads and stores are
implemented elsewhere, since they are too dependent opéledis core model to be expressed
in this generic manner.

An additional optimization, calledynthesisis also used whenever basic blocks are translated.
Each uop in the basic block is mapped to the address of a rRifiksim function inuopimpl.cpp
implementing the semantics of that uop; this function peing stored in theynthops[] array

of the BasicBlock structure. This saves us from having to use a large jump tat#e on, and
can map uops to pre-compiled templates that avoid nearfurier decoding of the uop during
execution.

7.2 Configuration Parser

PTLsim supports a wide array of command line or scriptablefigaration options, described
in Section10.3 The configuration parser engine (used by both PTLsim itsedf utilities like
PTLstats) is inconfig.cop andconfig.h . For PTLsim itself, each option is declared in three
places:

e ptisimh declares theTLsimConfig ~ structure, which is available from anywhere as the
config global variable. The fields in this structure must be of onéheffollowing types:
W64 (64-bit integer)double (floating point),bool (on/off boolean), ostringbuf (for text
parameters).

34

e ptisim.cpp declares th@TLsimConfig::reset() function, which sets each option to its
default value.

e ptisim.cpp declares th€onfigurationParser<PTLsimConfig>::setup() template func-
tion, which registers all options with the configurationger

7.3 Memory Manager

7.3.1 Memory Pools

PTLsim uses its own custom memory manager for all allocatigiven its specialized constraints
(particularly for PTLsim/X, which runs on the bare hardwarehe PTLsim memory manager (in
mm.cpp) uses three key structures.

The page allocatorallocates spans of one or more virtually contiguous pagesuskrspace-
only PTLsim, the page allocator doesn't really exist: it giyncalls mmap() and munmap(), let-
ting the host kernel do the actual allocation. In the fullteys PTLsim/X, the page alloca-
tor actually works with physical pages and is based on thengxllocator (see below). The
ptl_alloc_private_pages() andptl_free_private_pages() functions should be used to di-
rectly allocate page-aligned memory (or individual padesh this pool.

Thegeneral allocatoruses the&xtentAllocator template class to allocate large objects (greater
than page sized) from a pool of free extents. This allocattwraatically merges free extents and
can find a matching free block in O(1) time for any allocatiares The general allocator obtains
large chunks of memory (typically 64 KB at once) from the patiecator, then sub-divides these
extents into individual allocations.

The slab allocatormaintains a pool of page-sized “slabs” from which fixed sibgeots are allo-
cated. Each page only contains objects of one size; a sefsahtallocator handles each size from
16 bytes up to 1024 bytes, in 16-byte increments. The albogabvides extremely fast allocation
performance for object oriented programs in which manydbjef a given size are allocated. The
slab allocator also allocates one page at a time from theayfzdme allocator. However, it main-
tains a pool of empty pages to quickly satisfy requests. iBrilse same architecture used by the
Linux kernel to satisfy memory requests.

Theptl_mm_alloc() function intelligently decides from which of the two alldoas (general or
slab) to allocate a given sized object, based on the size@spgbject type and caller. The standard
new operatorand malloc() both use this function. Similarly, th&l_mm_free() function frees
memory. PTLsim uses a special bitmap to track which pageslabeallocator pages; if a pointer
falls within a slab, the slab deallocator is used; othen#ligegeneral allocator is used to free the
extent.

7.3.2 Garbage Collection and Reclaim Mechanism

The memory manager implements a garbage collection mesthamith which other subsystems
register reclaim functions that get called when an all@cefils. Theptl_mm_register_reclaim_handler()

35

function serves this role. Whenever an allocation fails,rétlaim handlers are called in sequence,
followed by an extent cleanup pass, before retrying thecatlon. This process repeats until the
allocation succeeds or an abort threshold is reached.

The reclaim function gets passed two parameters: the sizgt@s of the failed allocation, and an
urgencyparameter. Itirgencyis 0, the subsystem registering the callback should do #viexyin
its power to free all memory it owns. Otherwise, the subsysséould progressively trim more
and more unused memory with each call (and increasing uygeblmder no circumstances a
reclaim handler allowed to allocasay additional memory! Doing so will create an infinite loop;
the memory manager will detect this and shut down PTLsimi# &ttempted.

36

Chapter 8

Statistics Collection and Analysis

8.1 PTLsim Statistics Data Store

8.1.1 Introduction

PTLsim maintains a huge number of statistical counters atd goints during the simulation
process, and can optionally save this data to a file by useg-stats filenamé configuration
option. The data store is a binary file format used to effityecapture large quantities of statis-
tical information for later analysis. This file format supsostoring multiple regular or triggered
snapshots of all counters. Snapshots can be subtractedgadeand extensively manipulated, as
will be described later on.

PTLsim makes it trivial to add new performance counters écstiatistics data tree. All counters are
defined instats.h as a tree of nested structures; the top-leWlsimStats ~ structure is mapped
to the global variabletats , so counters can be directly updated from within the coderyple
increments, e.gstats.xxx.yyy.zzz.countername++ . Every node in the tree can be either a
struct , W64 (64-bit integer) double (floating point) orchar (string) type; arrays of these types
are also supported. In addition, various attributes, desdrbelow, can be attached to each node
or counter to specify more complex semantics, includingolgiems, labeled arrays, summable
nodes and so on.

PTLsim comes with a special scripttbuild (“data store template builder”) that parsess.h

and constructs a binary representation (a “template”)rd@ag the structure; this template data is
then compiled into PTLsim. Every time PTLsim creates astias file, it first writes this template,
followed by the rawPTLsimStats records and an index of those records by name. In this way,
the complete data store tree can be reconstructed at aitageven if the originaktats.h or
PTLsim version that created the file is unavailable. Thiseswh is analogous to the separation
of XML schemas (the template) from the actual XML data (tresstecords), but in our case the
template and data is stored in binary format for efficiensay.

We suggest using the data store mechanism to stibitatistics generated by your additions to
PTLsim, since this system has built-in support for snapstabteckpointing and structured easy to
parse data (unlike simply writing values to a text file). Ifusther suggested that only raw values

37

be saved, rather than doing computations in the simuladelfit leave the analysis to PTLstats
after gathering the raw data. If some limited computatiomseed to be done before writing each
statistics record, PTLsim will call the PTLsimMachine:dape stats() virtual method to allow your
model a chance to do so before writing the counters.

8.1.2 Node Attributes

After each node or counter is declared, one of several dpgettastyle “//” comments can be used
to specifyattributesfor that node:

e struct Name { // rootnode:

The node is at the root of the statistics tree (typically tim$y applies to the PTLsimStats
structure itself)

e struct Name { // node: summable

All subnodes and counters under this node are assumed kA 0% of whatever quantity
is being measured. This attribute tells PTLstats to print@etages next to the raw values in
this subtree for easier viewing.

e W64 name[arraysize]; // histo: m nmax stride

Specifies that the array of counters formiistogram i.e. each slot in the array represents
the number of occurrences of one event out of a mutually eskaiset of events. Thain
parameter specifies the meaning of the first slot (array ele®e while themax parame-
ter specifies the meaning of the last slot (array eleraeratysizel). Thestride parameter
specifies how many events are counted into every slot (tipitas is 1).

For example, let's say you want to measure the frequencyildison of the number of
consumers of each instruction’s result, where the maximumber of possible consumers
is 256. You could specify this as:

W64 consumers[64+1]; // histo: 0 256 4

This histogram has a logical range of 0 to 256, but is divided b5 slots. Because the
stride parameter is 4, any consumer counts from 0 to 3 incremen@staiunts from 4 to 7
increment slot 1, and so on. When you update this countey &om inside the model, you
should do so as follows:

stats.xxx.yyy.consumers[min(n / 4, 64)]++;

e \W64 namelarraysize]; // label: namearray

Specifies that the array of counters is a histogram of nametijatly exclusive events, rather
than simply raw numbers (as with thesto attribute). Thenamearraymust be the name of
an array ofarraysizestrings, with one entry per event.

For example, let's say you want to measure the frequencsitalisbn of uop types PTLsim
is executing. If there are OPCLASS_COUNT, you could dedlaegfollowing:

38

W64 opclass[OPCLASS_COUNT]; // label: opclass_names
In some header file included Byats.h , you need to declare the actual array of slot labels:

static const char * opclass_names[OPCLASS COUNT] = {"logic”, "addsub”,
"addsubc”, ...};

8.1.3 Configuration Options

PTLsim supports several options related to the statistits store:

e -stats fil enane

Specify the filename to which statistics data is written. dality, two files are created:
filenamecontains the template and snapshot index, whiéemame.datacontains the raw
data.

e -snapshot-cycles N

Creates a snapshot every N simulation cycles, numbereeécuwoiigely starting from 0. With-
out this option, only one snapshot, nanii@d! , is created at the end of the simulation run.

e -snapshot-now nane

Creates a snapshot nameameat the current point in the simulation. This can be used
to asynchronously take a look at a simulation in progrd$ss option is only available in
PTLsim/X.

8.2 PTLstats: Statistics Analysis and Graphing Tools

ThePTLstats program is used to analyze the statistics data store filegipeal by PTLsim. PTL-
stats will first extract the template stored in all data sfides, and will then parse the statistics
records into a flexible tree format that can be manipulatethbyuser. The following is an exam-
ple of one node in the statistics tree, as printed by PTLstats

dcache {
store {
issue (total 68161716) {
[29.7%] replay (total 20218780) {
[0.0%] sfr_addr_not _ready = O;
[16.8%] sfr_data_and_data to_store_not_ready
[11.8%] sfr_data not_ready = 2379338;
[23.4%] sfr_addr_and_data_to_store_not_ready = 4740838
[24.5%] sfr_addr_and_data_not_ready = 4951888;
[23.4%] sfr_addr_and_data_and_data_to_store_not_read y = 4740838;

3405878

39

[0.0%] exception = 30429;

[7.9%] ordering = 5404592;
[62.4%]| complete = 42507854;
[0.0%] unaligned = 61,

}

Notice how PTLstats will automatically sum up all entries@rtain branches of the tree to provide
the user with a breakdown by percentages of the total forsthiatree in addition to the raw values.
This is achieved using theé/“node: summable " attribute as described in Secti@il.2

Here is an example of a labeled histogram, produced using/thiabel: xxx " attribute
described in Sectio8.1.2

size[4] = {
ValRange: 3209623 90432573
Total: 107190122

Thresh: 10720

[6.2%] 0 6686971 1 (byte)

[6.4%] 1 6860955 2 (word)
[84.4%] 2 90432573 4 (dword)
[3.0%] 3 3209623 8 (qword)

h

8.3 Snapshot Selection

The basic syntax of the PTLstats commandptistats - options filename If no options are
specified, PTLstats prints out the entire statistics tresnfits root, relative to thénal snapshot.

To select a specific snapshot, use the following option:
ptlstats - snapshot nane- or - nunber

Snapshots may be specified by name or number.

It may be desirable to examine the difference in statidtiesveentwo snapshots, for instance
to subtract out the counters at the starting point of a giwenar after a warmup period. The
-subtract option provides this facility, for example:

ptistats -snapshot final -subtract startpoint
8.4 Working with Statistics Trees: Collection, Averaging and
Summing

To select a specific subtree of interest, use the syntax dotosving example:
40

ptistats -snapshot final -col | ect /ooocore/dcache/load examplel.stats example2.stats

This will print out the subtreéooocore/dcache/load in the snapshot namdihal (the de-
fault snapshot) for each of the named statistics &ilesnplel.stats ,example2.stats and so
on. Multiple files are generally used to examine a specifiiedb across several benchmarks.

Subtrees or individual statistics can also be summed ancg®é across many files, using the
-col | ect sumor-col | ect aver age commands in place otollect

8.5 Traversal and Printing Options

The - maxdept h option is useful for limiting the depth (in nodes) PTLstatfl descend into the
specified subtree. This is appropriate when you want to suimenaertain classes of statistics
printed as percentages of the whole, yet don’t want a breakad every sub-statistic.

The - percent - of -t opl evel option changes the way percentages are displayed. By tlefaul
percentages are calculated by dividing the total value ofi @ede by the total of its immediate
parent node. Wherpercent-of-toplevel is enabled, the divisor becomes the total of the
entire subtree, possibly going back several levels (i.ek bathe highest level node marked with
thesummablattribute), rather than each node’s immediate parent.

8.6 Table Generation

PTLstats provides a facility to easily generate R-row bydlismn data tables from a set of R
benchmarks run with C different sets of parameters. Taldase output in a variety of formats,
including plain text with tab or space delimiters (suitatdeimport into a spreadsheet)JEX (for
direct insertion into research reports) or HTML. To genematable, use the following syntax:

ptistats -t abl e /final/lsummary/cycles -rows gzip,gcc,perlbmk,mesa -col s small,lal

In this example, the benchmarks (“gzip”, “gcc”, “perlomKinesa”) will form the rows of the
table, while three trials done for each benchmark (“smdl#irge”, “huge”) will be listed in the
columns. The row and column names will be combined usingditem ‘Yorow/ptlsim.stats.%col

to generate statistics data store filenames Igkdp!ptisim.stats.small ”. PTLstats will then

load the data store for each benchmark and trial combin&ticreate the table.

113

Notice that you must create your own scripts, or manuallygach benchmark and trial with the
desired PTLsim options, plusstats ptlsim.stats. tri al nane”. PTLstats will only report
these results in table form; it will not actually run any blemarks.

The - t abl et ype option specifies the data format of the tableext ” (plain text with space
delimiters, suitable for import into a spreadsheagtek " (LATpX format, useful for directly in-
serting into research reports), drtthl 7 (HTML format for web pages).

41

The “scal e-rel ati ve-to-col N” option forces PTLstats to compute the percentage of in-
crease or decrease for each cell relative to the correspgmoiv in some other reference column
N. This is useful when running a “baseline” case, to be digalegs a raw value (usually the cycle
count,/final/summary/cycles) in column O, while all other experimental cases are disggday
as a percentage increase (fewer cycles, for a positive mige) or percentage decrease (negative
value) relative to this first colummN(= 0).

8.6.1 Bargraph Generation

In addition to creating tables, PTLstats can directly @eadlorful graphs (in Scalable Vector
Graphics (SVG) format) from a set of benchmarks (specifiethieyrows option) and trials of
each benchmark (specified by thels option). For instance, to plot the total number of cycles
taken over a set of benchmarks, each run under differentiRifé@nfigurations, use the following
example:

ptistats - bar graph /final/lsummary/cycles -rows gzip,gcc,perlomk,mesa -col

In this case, groups of three bars (for the trials “smallarfie”, “huge”) appear for each bench-
mark.

The graph’s layout can be extensively customized using piers-title , -width , -height

Inkscape (http://www.inkscape.org) is an excellent vegtaphics system for editing and format-
ting SVG files generated by PTLstats.

8.7 Histogram Generation

Certain array nodes in the statistics tree can be taggedstegram” nodes by using thesto:
orlabel: attributes, as described in Sect®i.2 Forinstance, theoocore/frontend/consumer-count
node in the out-of-order core is a histogram node. PTLs&igaectly create graphs (in Scalable
Vector Graphics (SVG) format) for these special nodes,gmsie- hi st ogr amoption:

ptistats - hi st ogr am /ooocore/frontend/consumer-count > example.svg

The histogram’s layout can be extensively customized usiegptionstitle ,-width , -height

In addition, the-percentile option is useful for controlling the displayed data rangeskglud-
ing data under the Nth percentile. Thegscale and-logk options can be used to apply a log
scale (instead of a linear scale) to the histogram bars. yifitecs of these options can be obtained
by runningptistats ~ without arguments.

42

S SMa

Chapter 9

Benchmarking Techniques

9.1 Trigger Mode and other PTLsim Calls From User Code

PTLsim optionally allows user code to control the simulatarde through thetlcall_xxx()

family of functions found irpticalls.h when trigger mode is enabledr{gger configuration
option). This file should be included by any PTLsim-aware psegrams; these programs must be
recompiled to take advantage of these features. Amongs$titioéions provided bytlcalls.h

are:

e ptlcall_switch_to_sim() is only available while the program is executing in native
mode. It forces PTLsim to regain control and begin simutatimstructions as soon as this
call returns.

e ptlcall_switch_to_native() stops simulation and returns to native execution, effec-
tively removing PTLsim from the loop.

e ptlcall_marker() simply places a user-specified marker number in the PTLsifile®

e ptlcall_capture_stats() adds a new statistics data store snapshot at the time it is
called. You can pass a string to this function to name youpsmat, but all names must be
unique.

e ptlcall_nop() does nothing but test the call mechanism.

In userspace PTLsim, these calls work by forcing executiondde on a “gateway page” at a
specific fixed addres9x1000 currently); PTLsim will write the appropriate call gate eob this
page depending on whether the process is in native or sietlfabde. In native mode, the call
gate page typically contains a 64-t0-64-bit or 32-to-6ddyijump into PTLsim, while in simulated
mode it contains a reserved x86 opcode interpreted by thel@8éder as a special kind of system
call. If PTLsim is built on a 32-bit only system, no mode swiis required.

In full system PTLsim/X, the x86 opcodes used to implemeaséhcalls are directly handled by
the PTLsim/X hypervisor as if they were actually part of tlaive x86 instruction set.

43

Generally these calls are used to perform “intelligent bemarking”: theptlcall_switch_to_sim()

callis made at the top of the main loop of a benchmark aftéali@ation, while thepticall_switch_to_native
call is inserted after some number of iterations to stop Kitran after a representative subset of

the code has completed. This intelligent approach is faeb#tan the blind “sample for N million
cycles after S million startup cycles” approach used by mesgarchers.

Fortran programs will have to actually link in tipdcalls.o object file, since they cannot in-
clude C header files. The function names that should be udée iRortran code remain the same
as those from thptlcalls.h header file.

9.2 Notes on Benchmarking Methodology and “IPC”

The x86 instruction set requires some different benchmgridchniques than classical RISC ISAs.
In particular,ulPC (Micro-Instructions per Cycle) a NOT a good measure of grformance for

an x86 processorBecause one x86 instruction may be broken up into numerqgos, itds never
appropriate to compare IPC figures for committed x86 insibns per clock with IPC values
from a RISC machine. Furthermore, different x86 implemgoits use varying numbers of uops
per x86 instruction as a matter of encoding, so even comgahi@ uop based IPC between x86
implementations or RISC-like machines is inaccurate.

Users are strongly advised to use relative performance unemsnstead. Comparing the total
simulated cycle count required to complete a given benckimetiveen different simulator config-
urations is much more appropriate than IPC with the x86usiton set. An example would be “the
baseline took 100M cycles, while our improved system todW B§cles, for a 2x improvement”.

9.3 Simulation Warmup Periods

In some simulators, it is possible to quickly skip througtpadgfic number of instructions before

starting to gather statistics, to avoid including initzaliion code in the statistics. In PTLsim, this
is neither necessary nor desirable. Because PTLsim diregkflcutes your program on the host
CPU until it switches to cycle accurate simulation moderghs no way to count instructions in

this manner.

Many researchers have gotten in the habit of blindly skig@narge number of instructions in
benchmarks to avoid profiling initialization code. Howewiis is not a very intelligent policy:
different benchmarks have different startup times unéltthp of the main loop is reached, and it is
generally evident from the benchmark source code whergthat should be. Therefore, PTLsim
supportdrigger points: by inserting a special function capt(call_switch_to_sim) within the
benchmark source code and recompiling,-thgger ~ PTLsim option can be used to run the code
on the host CPU until the trigger point is reached. If the sewode is unavailable, thgartrip
OxADDRESS option will start full simulation only at a specified addréesy. function entry point).

If you want to warm up the cache and branch predictors pricstémting statistics collection,
combine thetrigger option with the-snapshot-cycles N option, to start full simulation at the

44

top of the benchmark’s main loop (where the trigger call s, only start gathering statistié$
cycles later, after the processor is warmed up. Rememipee ghe trigger point is placeadter all
initialization code in the benchmark, in general it is ongcassary to use 10-20 million cycles of
warmup time before taking the first statistics snapshotibitime, the caches and branch predictor
will almost always be completely overwritten many times.isTépproach significantly speeds up
the simulation without any loss of accuracy compared to tast'simulation” mode provided by
other simulators.

In PTLstats, use thaubtract option to make sure the final statistics don’t include thernmgy
period before the first snapshot. To subtract the final sregstm snapshot O (the first snapshot
after the warmup period), use a command similar to the folgw

ptlstats -subtract 0 ptlsim.stats

9.4 Sequential Mode

PTLsim supportsequential modan which instructions are run on a simple, in-order prooess
model (inseqcore.cpp) without accounting for cache misses, branch mispredintssa forth.
This is much faster than the out of order model, but is obwoslewer than native execution. The
purpose of sequential mode is mainly to aid in testing theta8&®p decoder, microcode functions
and RTL-level uop implementation code. It may also be udefugathering certain statistics on
the instruction mix and count without running a full sim szt

NOTE: Sequential mode isotintended as a “warmup mode” for branch predictors and cadhes
you want this behavior, use statistical snapshot deltagsrithed in Sectiof.3.

Sequential mode is enabled by specifying there seq ” option. It has no other core-specific
options.

45

Part Il

PTLsim Classic: Userspace Linux
Simulation

46

Chapter 10

Getting Started with PTLsim

NOTE: This part of the manual is relevant only if you are using tlassic userspace-only version
of PTLsim. If you are looking for the full system SMP/SMT viens, PTLsim/X, please skip this
entire part and read Pdit instead.

10.1 Building PTLsim

Prerequisites:

e PTLsim can be built ototh 64-bit x86-64 machinefAMD Athlon 64 / Opteron / Turion,
Intel Pentium 4 with EM64T and Intel Core a5 well as ordinary 32-bit x86 systemsin
either case, your system must support SSE2 instructionsiaalern CPUs made in the last
few years (such as Pentium 4 and Athlon 64) support this, loer €PUs (Pentium Il and
earlier) specifically dmot support PTLsim.

o If built for x86-64, PTLsim will run both 64-bit and 32-bit pgrams automatically. If built
on a 32-bit Linux distribution and compiler, PTLsim only sqpts ordinary x86 programs
and will typically be slower than the 64-bit bujldven on 32-bit user programs.

e PTLsim runs on any recent Linux 2.6 based distribution.
¢ We have successfully built PTLsim with gcc 3.3, 3.4.x and:1gcc 4.0.x has documented
bugs affecting some of our code).

Quick Start Steps:

e Download PTLsim from our web sitétfp://www.ptlsim.org/download.php). We rec-
ommend starting with the “stable” version, since this corgall the files you need and can
be updated later if desired.

e Unpackptlsim-2006xxxx-rXXX.tar.gz to create thetlsim directory.
47

e Runmake.

— The Makefile will detect your platform and automatically qaifa the correct version
of PTLsim (32-bit or 64-bit).

10.2 Running PTLsim

PTLsim invocation is very simple: after compiling the simtadr and making sure thetlsim
executable is in your path, simply run:

ptisim full-path-to-executable arguments...

PTLsim reads configuration options for running various ysegrams by looking for a configu-
ration file namedhome/ user name/.ptlsim/ pat h/ t o/ pr ogr anf execut abl enane.conf . To set
options for each program, you'll need to create a directbth® form/home/ user nane/.ptlsim

and make sub-directories under it corresponding to thepfath to the program. For example,
to configure/bin/ls you’'ll need to run nkdir /home/ user name/.ptisim/bin " and then edit
"/home/ user nane/.ptlsim/bin/ls.conf "with the appropriate options. For example, try putting
the following inis.conf as described:

-logfile ptlsim.log -loglevel 9 -stats Is.stats -stopinsn s 10000

Then run:

ptlsim /bin/ls -la

PTLsim should display its system information banner, thendutput of simulating the directory
listing. With the options above, PTLsim will simulatgn/ls starting at the first x86 instruction

in the dynamic linker’s entry point, run until 10000 x86 insttions have been committed, and will
then switch back to native mode (i.e. the user code will ruaatly on the real processor) until
the program exits. During this time, it will compile an ex¢are log of the state of every micro-
operation executed by the processor and will save iptieifh.log " in the current directory. It

will also create Is.stats ", a binary file containing snapshots of PTLsim’s internaifpemance
counters. Thetlistats program (Chapte8) can be used to print and analyze these statistics by
running “ptistats lIs.stats ”

10.3 Configuration Options

PTLsim supports a variety of options in the configuration éfeeach program; you can run
“ptlsim " without arguments to get a full list of these options. Thédwing sections only list
the most useful options, rather than every possible option.

48

The configuration file can also contain comments (startinty " at any point on a line) and
blank lines; the first non-comment line is used as the actwdiguration.

PTLsim supports multiple models of various microprocessoes; the “core corenaméoption
can be used to choose a specific core. The default comds,“the dynamically scheduled out
of order superscalar core described in great detail inIRarfPTLsim also comes with a simple

sequential in-order coreséq”. It is most useful for debugging decoding and microcodeéss
rather than actual performance profiling.

10.4 Logging Options

PTLsim can log all simulation events to a log file, or can béringed to log only a subset of these
events, starting and stopping at various points:

e -logfile filename
Specifies the file to which log messages will be written.

e -loglevel level
Selects a subset of the events that will be logged:

— O disables logging
— 1 displays only critical events (such as system calls artd steanges)
— 2-3 displays less critical simulator-wide events

— 4 displays major events within the core itself (like pipelftushes, basic block decodes,
etc)

— 6 displaysall events that occur within each pipeline stage of the coreyesyale
— 99 displays every possible event. This will create massigdiles!

e -startibog cycle
Starts logging only aftecyclecycles have elapsed from the start of the simulation.

e -startlogrip rp

Starts logging only after the first time the instructiorrigtis decoded or executed. This is
mutually exclusive withstartlog

10.5 Event Log Ring Buffer

PTLsim also maintains an event log ring buffer. Every timedbre takes some action (for instance,
dispatching an instruction, executing a store, commitéimgsult or annulling each uop after an
exception), it writes that event to a circular buffer thabhtzons (by default) the last 32768 events

49

in chronological order (oldest to newest). This is extrgmedeful for debugging in cases where
you want to “look backwards in time” from the point where adfie but unknown “bad” event
occurred, but cannot leave logging at e.dodlevel 99 " enabled all the time (because it is far
too slow and space consuming).

The event log ring buffer must be enabled via thegbuf option. This is disabled by default
since it exacts a 25-40% performance overhead (but this ¢hinetter than the 10000%+ overhead
of full logging).

PTLsim will always print the ring buffer to the log file wheresv

e Any assert Statement fails within the out of order simulator core;

e Any fatal exception occurs;

e Atuser-specified points, by insertingpte.eventlog.print(logfile); "anywhere within
the code;
e Whenever the-fingbuf-trigger-rip rip” option is used to specify a specific trigger RIP.

When the last uop at this RIP is committed, the ring bufferriatpd, exposing all events
that happened over the past few thousand cycles (going laadkwn time from the cycle in
which the trigger instruction committed)

e The event log ring buffer is automatically enabled whenelgtevel is 6 or higher; in
this case all events are logged to the logfile after everyecycl

10.6 Simulation Start Points

Normally PTLsim starts in simulation mode at the first instion in the target program (or the
Linux dynamic linker, assuming the program is dynamicaithkéd). It may be desirable to skip
time-consuming initialization parts of the program, usimg of two methods.

The -startrip rip option places a breakpoint gp, then immediately switches to native mode
until that breakpoint is hit, at which point PTLsim beginsisiation.

Alternatively, if the source code to the program is avagalit may be recompiled with call(s)

to a special functionptlcall_switch_to_sim() , provided inptlcalls.h . PTLsim is then
started with thetrigger option, which switches it to native mode until the first call the
ptlcall_switch_to_sim() function, at which point simulation begins. This functi@md other

special code that can be used within the target programsizitbed in Sectio®.1

10.7 Simulation Stop Points

By default, PTLsim continues executing in simulation modéluhe target program exits on its
own. However, typically programs are profiled for a fixed nembf committed x86 instructions,

50

or until a specific point is reached, so as to ensure an iddrgjgan of instructions is executed on
every trial, without waiting for the entire program to finisithe following options support this
behavior:

e -stopinsns insnswill stop the simulation afteinsnsx86 instructions have committed.
e -stop cyclesstops aftecyclescycles have been simulated.
e -stoprip rip stops after the instruction at rip is decoded and execueetrgt time.

PTLsim will normally switch back to native mode after finisgisimulation. If the program should
be terminated instead, thexitend option will do so.

The node is at the root of the statistics tree (typically tmky applies to the PTLsimStats structure
itself)

10.8 Statistics Collection

PTLsim supports the collection of a wide variety of statistind counters as it simulates your code,
and can make regular or triggered snapshots of the coutkepte8 describes this support, while
Section8.1.3documents the configuration options associated with statisollection, including
-stats , -snapshot-cycles , -Shapshot-now

51

Chapter 11

PTLsim Classic Internals

11.1 Low Level Startup and Injection

Note: This section deals with the internal operation of the PTLisimlevel code, independent of
the out of order simulation engine. If you are only interdstemodifying the simulator itself, you
can skip this section.

Note: This section does not apply to the full system PTLsim/X; pieaee the corresponding
sections in Partil instead.

11.1.1 Startup on x86-64

PTLsim is a very unusual Linux program. It does its own in&&mmemory management and

threading without help from the standard libraries, irgatgelf into other processes to take control
of them, and switches between 32-bit and 64-bit mode witlsimgle process image. For these
reasons, itis very closely tied to the Linux kernel and usasmber of undocumented system calls
and features only available in late 2.6 series kernels.

PTLsim always starts and runs as a 64-bit process even wineingu32-bit threads; it context
switches between modes as needed. The statically lipksich executable begins executing
at ptisim_preinit_entry in lowlevel-64bit.S . This code callsptlsim_preinit() in
kernel.cpp to set up our custom memory manager and threading envirdrivegore any stan-
dard C/C++ functions are used. After doing so, the nommeh() function is invoked.

Theptlsim binary can run in two modes. If executed from the commanddsa normal program,
it starts up ininject mode. Specificallymain() in ptlsim.cpp ~ checks if thenside_ptlsim
variable has been set Ipyisim_preinit_entry , and if not, PTLsim enters inject mode. In
this mode ptlsim_inject() in kernel.cpp is called to effectively inject thetlsim binary
into another process and pass control to it before even thamlig linker gets to load the program.
In ptlsim_inject() , the PTLsim process is forked and the child is placed undeptrent’s
control usingptrace() . The child process then usesec() to start the user program to simulate
(this can be either a 32-bit or 64-bit program).

52

However, the user program starts in the stopped state,iatigtisim_inject() to useptrace()

and related functions to inject either 32-bit or 64-bit btz der code directly into the user pro-
gram address space, overwriting the entry point of the dyméinker. This code, derived from
injectcode.cpp (specifically compiled aisjectcode-32bit.o andinjectcode-64bit.o)

is completely position independent. Its sole function iswp the rest oftlsim into the user pro-
cess address space at virtual addfsg9000000 and set up a speciabaderinfo structure to
allow the master PTLsim process and the user process to coioate. The boot code also restores
the old code at the dynamic linker entry point after relaogitself. Finally,ptlsim_inject()

adjusts the user process registers to start executing thtecbde instead of the normal program
entry point, and resumes the user process.

At this point, the PTLsim image injected into the user preoessts in a bizarre environment: if
the user program is 32 bit, the boot code will need to swit@¥tdit mode before calling the 64-bit
PTLsim entrypoint. Fortunately x86-64 and the Linux kemrmalke this process easy, despite never
being used by normal programs: a regular far jump switchestirent code segment descriptor
to 0x33, effectively switching the instruction set to x86-64. Fbetmost part, the kernel cannot
tell the difference between a 32-bit and 64-bit processomag &s the code uses 64-bit system calls
(i.e. syscall instruction instead oint 0x80 as with 32-bit system calls), Linux assumes the
process is 64-bit. There are some subtle issues relatedrtal $iandling and memory allocation
when performing this trick, but PTLsim implements workands to these issues.

After entering 64-bit mode if needed, the boot code passasaldo PTLsim aptlsim_preinit_entry
Theptlsim_preinit() function checks for the speciabaderinfo structure on the stack and
in the ELF header of PTLsim as modified by the boot code; ifeérstructures are found, PTLsim
knows it is running inside the user program address spader #étting up memory management
and threading, it captures any state the user process wviiadized with. This state is used to fill
in fields in the globaktx structure of clas€oreContext : various floating point related fields
and the user program entry point and original stack poineesaved away at this point. If PTLsim
is running inside a 32-bit process, the 32-bit argumentgir@mment and kernel auxiliary vec-
tor array (auxv) need to be converted to their 64-bit fornoatFTLsim to be able to parse them
from normal C/C++ code. Finally, control is returnedntain() to allow the simulator to start up
normally.

11.1.2 Startup on 32-bit x86

The PTLsim startup process on a 32-bit x86 system is esHigrdgigtreamlined version of the
process above (Sectidi.1.), since there is no need for the same PTLsim binary to sumodint
32-bit and 64-bit user programs. The injection process lig sinilar to the case where the user
program is always a 32-bit program.

11.2 Simulator Startup

In kernel.cpp , themain() function callsinit_config() to read in the user program specific
configuration as described in Sectioh3.2and 10.3 then starts up the various other simulator

53

subsystems. If one of thexcludeld or -startrip options were given, a breakpoint is inserted
at the RIP address where the user process should switch &tive mode to simulation mode (this
may be at the dynamic linker entry point by default).

Finally, switch_to_native_restore_context() is called to restore the state that existed before
PTLsim was injected into the process and return to the dymdimker entry point. This may
involve switching from 64-bit back to 32-bit mode to stareenting the user process natively as
discussed in Sectiohl.1

After native execution reaches the inserted breakpoimiticode, the code performs a 32-to-64-bit
long jump back into PTLsim, which promptly restores the codderneath the inserted breakpoint
thunk. At this point, theswitch_to_sim() function inkernel.cpp is invoked to actually begin
the simulation. This is done by callirgnulate() in ptlsim.cpp

At some point during simulation, the user program or the gamétion file may request a switch
back to native mode for the remainder of the program. In #ecthewitch_to_native_restore_context()
function gets called to save the statistics data store, mapTLsim internal state back to the x86
compatible external state and return to the 32-bit or 6444®t code, effectively removing PTLsIim
from the loop.

While the real PTLsim user process is running, the origirfdl$?m injector process simply waits
in the background for the real user program with PTLsim iesido terminate, then returns its exit
code.

11.3 Address Space Simulation

PTLsim maintains theddressSpace class as global variablesp (seekernel.cpp) to track the
attributes of each page within the virtual address spaceenMompiled for x86-64 systems,
PTLsim uses Shadow Page Access Tables (SPATSs), which anetiedly large two-level bitmaps.
Since pages are 4096 bytes in size, each 64 kilobyte chutieddfitmap can track 2 GB of virtual
address space. In each SPAT, each top level array entrysgoiatchunk mapping 2 GB, such that
with 131072 top level pointers, the full 48 bit virtual adssespace can typically be mapped with
under a megabyte of SPAT chunks, assuming the address spaua €.

When compiled for 32-bit x86 systems, each SPAT is just a 1B8t& bitmap, with one bit for
each of the 1048576 4 KB pages in the 4 GB address space.

In the AddressSpace structure, there are separate SPAE tablreadable pages{dmap field),
writable pageswvritemap field) and executable pagesxécmap field). Two additional SPATS,
dtlbmap anditbmap , are used to track which pages are currently mapped by thdatiea trans-
lation lookaside buffers (TLBSs); this is discussed furtimeection25.4

When running in native mode, PTLsim cannot track changdsa@tocess memory map made by
native calls tanmap(), munmap() , etc. Therefore, at every switch from native to simulatioode,
theresync_with_process_maps() function is called. This function parses thebc/self/maps
metafile maintained by the kernel to build a list of all regonapped by the current process. Using
this list, the SPATs are rebuilt to reflect the current memmogp. This is absolutely critical for
correct operation, since during simulation, speculatbaes and stores will only read and write

54

memory if the appropriate SPAT indicates the address issadde to user code. If the SPATs
become out of sync with the real memory map, PTLsim itself oragh rather than simply marking
the offending load or store as invalid. Thesync_with_process_maps() function (or more
specifically, themqueryall) helper function) is fairly kernel version specific since tbamat of
Iproc/selfimaps has changed between Linux 2.6.x kernels. New kernels mayreegpdating
this function.

11.4 Debugging Hints

When adding or modifying PTLsim, bugs will invariably crop.uFortunately, PTLsim provides a
trivial way to find the location of bugs which silently coriygrogram execution. Since PTLsim can
transparently switch between simulation and native ma#aiing the divergence point between
the simulated behavior and what a real reference machiné&vaaucan be done through binary
search. Thestopinsns configuration option can be set to stop simulation beforeptiodlem
occurs, then incremented until the first x86 instructionreal the program is determined.

The out of order simulatorofocore.cpp) includes extensive debugging and integrity checking
assertions. These may be turned off by default for improvertbpmance, but they can be easily
re-enabled by defining tHeENABLE_CHECKSymbol at the top ofoocore.cpp , ooopipe.cop and
oooexec.cpp . Additional check functions are in the code but commentegtbese may be used
as well.

You can also debug PTLsim witidb, although the process is non-standard due to PTLsim’s co-
simulation architecture:

e Start PTLsim on the target program like normal. Notice thesad N is running in
XX-bit mode message printed at startup: this is the PID you will be delmgggot the
“ptlsim 7 process that may also be running.

e Start GDB and typeadttach 12345 " if 12345was the PID listed above

e Type “symbol-file ptlsim " to load the PTLsim internal symbols (otherwise gdb only
knows about the benchmark code itself). You should spebiéyftll path to the PTLsim
executable here.

e You're now debugging PTLsim. If you run thét'” command to get a backtrace, it should
show the PTLsim functions starting at address 0x70000000.

If the backtrace does not display enough information, gchtoMakefile and enable the "no
optimization" options (the "-O0" line instead of "-099"nse that will make more debugging
information available to you.

The “-pause-at-startup second$configuration option may be useful here, to give you time to
attach with a debugger before starting the simulation.

55

11.5 Timing Issues

PTLsim uses th&ycleTimer class extensively to gather data about its own performasoeu
the CPU's timestamp counter. At startupsimperstl.cpp , the CPU’s maximum frequency is
qgueried from the appropriate Linux kernel sysfs node (ifilatde) or from/proc/cpuinfo if
not. Processors which dynamically scale their frequenay \aitage in response to load (like
all Athlon 64 and K8 based AMD processors) require speciadhag. It is assumed that the
processor will be running at its maximum frequency (as regabby sysfs) or a fixed frequency
(as reported byproc/cpuinfo) throughout the majority of the simulation time; otherwike
timing results will be bogus.

11.6 External Signals and PTLsim

PTLsim can be forced to switch between native mode and séglisrode by sending it standard
Linux-style signals from the command line. If your prograsalled “myprogram”, start it under
PTLsim and run this command from another terminal:

killall -XCPU mypr ogr am

This will force PTLsim to switch between native mode and datian mode, depending on its
current mode. It will print a message to the console and tgBléowhen you do this. The initial
mode (native or simulation) is determined by the presentieesfrigger option: with-trigger
the program starts in native mode until the trigger poina(iy) is reached.

56

Part Il

PTLsim/X: Full System SMP/SMT
Simulation

57

Chapter 12

Background

12.1 Virtual Machines and Full System Simulation

Full system simulation and virtualization has been aroundesthe dawn of computers. Typically
virtual machinesoftware is used to ruguestoperating systems on a physid¢astsystem, such
that the guest believes it is running directly on the barelware. Modern full system simulators
in the x86 world can be roughly divided into two groups (thégpr does not consider systems for
other instruction sets).

Hypervisorsexecute most unprivileged instructions on the native CPllbspeed, but trap priv-
ileged instructions used by the operating system kernegrevkhey are emulated by hypervisor
software so as to maintain isolation between virtual maehand make the virtual machine nearly
indistinguishable from the real CPU. In some cases (pdatilyuon x86), additional software tech-
niques are needed to fully hide the hypervisor from the gO&st

e Xen[5, 6, 4, 7, 8, 1] represents the current state of the art in this field; it béldescribed in
great detail later on.

e VMware[11]] is a very well known commercial product that allows unmaatifk86 operating
systems to run inside a virtual machine. Because the x86ist&in set is not fully virtual-
izable, VMware must employ x86-to-x86 binary translatienhniques on kernel code (but
not user mode code) to make the virtual CPU indistinguish&bim the real CPU for com-
patibility reasons. These translations are typically eacim a hidden portion of the guest
address space to improve performance compared to sim@spheting sensitive x86 in-
structions. While this approach is sophisticated and #affect exacts a heavy performance
penalty on I/O intensive workload8][Interestingly, the latest microprocessors from Intel
and AMD include hardware features (Intel VI4, AMD SVM [15]) to eliminate the binary
translation and patching overhead. Xen fully supportseheshnologies to allow running
Windows and other OS’s at full speed, while VMware has yehtdude full support.

VMware comes in two flavors. ESX is a true hypervisor that bawt the bare hardware
underneath the first guest OS. GSX and Workstation use apaser$rontend process con-
taining all virtual device drivers and the binary transtatehile thevmmonkernel module

58

(open source in the Linux version) handles memory virtadian and context switching
tasks similar to Xen.

e Several other products, including Virtual PC and Paralf@igvide features similar to VMware
using similar technology.

Unlike hypervisorssimulatorsperform cycle accurate execution of x86 instructions usirer-
preter software, without running any guest instructionsr@nnative CPU.

e Bochg1Q] is the most well known open source x86 simulator; it is cdased to be a nearly
RTL (register transfer language) level description of gwe#6 behavior from legacy 16-
bit features up through modern x86-64 instructioBschsis very useful for the functional
validation of real x86 microprocessors, butitis very slaround 5-10 MHz equivalent) and
is not useful for implementing cycle accurate models of mod®p-based out of order x86
processors (for instance, it does not model caches, memtanydy, functional units and so
on).

e QEMU [9] is similar in purpose to VMware, but unlike VMware, it suppomultiple CPU
host and guest architectures (PowerPC, SPARC, ARM, etcM@Eses binary translation
technology similar to VMware to hide the hypervisor’s presefrom the guest kernel. How-
ever, due to its cross platform design, both kernel and us# s passed through x86-t0-x86
binary translation (even on x86 platforms) and stored imadiation cache. Interestingly,
Xen uses a substantial amount of QEMU code to model commaiwlaae devices when
running unmodified operating systems like Windows, but X@huses its own hardware-
assisted technology to actually achieve virtualizatioBEMY supports a proprietary hyper-
visor module to add VMware’s and Xen'’s ability to run user rea@tde natively on the CPU
to reduce the performance penalty; hence it is also in therwgor category.

e Simicg12] is a commercial simulation suite for modeling both the fumgal aspects of var-
ious x86 processors (including vendor specific extensiaasyell as user-designed plug-in
models of real hardware devices. It is used extensivelydusiry for modeling new hard-
ware and drivers, as well as firmware level debugging. LikMQESimics uses x86-t0-x86
binary translation to instrument code at a very low levelle/aichieving good performance
(though noticeably slower than a hypervisor provides).ikénQEMU, Simics is fully ex-
tensible and supports a huge range of real hardware mod#l4, ib not possible to add
cycle accurate simulation features below the x86 instonckével, making it less useful to
microarchitects (both because of technical consideratamwell as its status as a closed
source product).

e SimNow[13] is an AMD simulation tool used during the design and vaimlatof AMD’s
x86-64 hardware. Like Simics, it is a functional simulataryo but it models a variety
of AMD-built hardware devices. SimNow uses x86-t0-x86 Ibyjnaanslation technology
similar to Simics and QEMU to achieve good performance. BseaSimNow does not
provide cycle accurate timing data, AMD uses its own TSIMé®ased simulator, derived
from the K8 RTL, to do actual validation and timing studieémBSow is available for free
to the public, albeit as closed source.

59

All of these tools share one common disadvantage: they ableimo model execution at a level
below the granularity of x86 instructions, making them utale to microarchitects. PTLsim/X

seeks to fill this void by allowing extremely detailed uopdecycle accurate simulation of x86
and x86-64 microprocessor cores, while simultaneouslyet@hg all the performance benefits of
true native-mode hypervisors like Xen, selective binaapstation based hypervisors like VMware
and QEMU, and the detailed hardware modeling capabiliti&ochs and Simics.

12.2 Xen Overview

Xen [6, 5, 4, 7, 8, 1] is an open source x86 virtual machine monitor, also knowa lagpervisor
Each virtual machine is called a “domain”, where domain (riglleged and accesses all hardware
devices using the standard drivers; it can also create aadtlyi manipulate other domains. Guest
domains typically do not have hardware access do not hasvatbkess; instead, they relay requests
back to domain 0 using Xen-specific virtual device driveraclEguest can have up to 32 VCPUs
(virtual CPUs). Xen itself is loaded into a reserved regidploysical memory before loading a
Linux kernel as domain 0O; other operating systems can runu@sigdomains. Xen is famous for
having essentially zero overhead due to its unique and valined design; it's possible to run a
normal workstation or server under Xen with full native peniance.

Under Xen'’s “paravirtualized” mode, the guest OS runs onrahitecture nearly identical to x86
or x86-64, but a few small changes (critical to preserviniyegerformance levels) must be made
to low-level kernel code, similar in scope to adding supporta new type of system chipset or
CPU manufacturer (e.g. instead of an AMD x86-64 on an nVidipget, the kernel would need to
support a Xen-extended x86-64 CPU on a Xen virtual “chipséithese changes mostly concern
page tables and the interrupt controller:

e Paging is always enabled, and any physical pages (called¢Hima frame numbers”, or
MFNSs) used to form a page table must be marked read-onla(a'ginned”) everywhere.
Since the processor can only access a physical page if iésereced by some page table,
Xen can guarantee memory isolation between domains bynfpthe guest kernel to replace
any writes to page table pages with specmhu_update(hypercalls (a.k.a. system calls
into Xen itself). Xen makes sure each update points to a paged by the domain before
updating the page table. This approach has essentiallypeefarmance loss since the guest
kernel can read its own page tables without any further @utiions (i.e. the page tables point
to the actual physical addresses), and hypercalls are eagad for batched updates (e.g.
validating a new page table aftefak() requires only a single hypercall).

— Xen also supportgseudo-physicglages, which are consecutively numbered from 0 to
some maximum (i.e. 65536 for a 256 MB domain). This is requbvecause most ker-
nels (including Linux and Windows) do not support “sparsdis¢ontiguous) physical
memory ranges very well (remember that every domain cdradtress every physical
page, including those of other domains - it just can't acedissf them). Xen provides
pseudo-to-machine (P2M) and machine-to-pseudo (M2Pgdatol do this mapping.
However, the physical page tables still continue to refeegrhysical addresses and are
fully visible to the guest kernel; this is just a conveniefeature.

60

— Xen can save an entire domain to disk, then restore it laaetirsg at that checkpoint.
Since Xen tracks every read-only page that’s part of some palgje, it can restore
domains even if the original physical pages are now used hye#ung else: it au-
tomatically remaps all MFNs in every page table page it knaiasut (but the guest
kernel must never store machine page numbers outside oftphlgepages - it's the
same concept as in garbage collection, where pointers miysteside in the obvious
places).

— Xen can migrate running domains between machines by trgeidmch physical pages
become dirty as the domain executes. Xen sbeglow page tabldsr this: it makes
copy-on-write duplicates of the domain’s page tables, ardgnts these internal tables
to the CPU, while the guest kernel still thinks it's using treginal page tables. Once
the migration is complete, the shadow page tables are méagdinto the real page
tables (as with a save and restore) and the domain contisuesial.

— The memory allocation of each domain is elastic: the domaimgive any free pages
back to Xen via the “balloon” mechanism; these pages canliben-assigned to other
domains that need more memory (up to a per-domain limit).

— Domains can share some of their pages with other domaing tregrant mechanism.
This is used for zero-copy network and disk 1/0O between dar@and guest domains.

e Interrupts are delivered using awent channeinechanism, which is functionally identical
to the 10-APIC hardware on the bare CPU (essentially it's @ XAPIC” instead of the
Intel and AMD models already supported by the guest kernédn sets up ahared info
page containing bit vectors for masked and pending intésr{jpst like an APIC’s memory
mapped registers), and lets the guest kernel register am leaedler function. Xen then does
an upcall to this function whenever a virtual interrupt\ees; the guest kernel manipulates
the mask and pending bits to ensure race-free notificaties automatically maps physical
IRQs on the APIC to event channels in domain 0, plus it addswis virtual interrupts (for
the usual timer and a Xen-specific notification port; asé /proc/interruptson a Linux
system under Xen to see this). When the guest domain hagpleMCPUSs, interprocessor
interrupts (IPIs) are done through the Xen event contragllermanner identical to hardware
IPls.

— Xen is unique in that PCI devices can be assigned to any dosaiior instance each
guest domain could have its own dedicated PCI network cadddesk controller -
there’s no need to relay requests back to domain O in thisguafiion, although it only
works with hardware that supports IOMMU virtualization l{etwise it's a security
risk, since DMA can be used to bypass Xen’s page table protext

e Xen provides the guest with additional timers, so it can barawf both “wall clock” time as
well as execution time (since there may be gaps in the ladtetteer domains use the CPU);
this lets it provide a smooth interactive experience in a gggtems like VMware cannot.
The timers are delivered as virtual interrupt events.

e All other features of the paravirtualized architecturef@etty match x86. The guest kernel
can still use most x86 privileged instructions, suchr@gmsr, wrmsr, and control register

61

updates (which Xen transparently intercepts and valijlatesl in domain O, it can access
I/O ports, memory mapped 1/O, the normal x86 segmentatiddT{@nd LDT) and inter-
rupt mechanisms (IDT), etc. This makes it possible to run amab Linux distribution,
with totally unmodified drivers and software, at full natseeed (we do just this on all our
development workstations and servers). Benchmakbdve shown Xen to have ~2-3%
performance decrease relative to a traditional Linux Kemkere as VMware and similar
solutions yield a 20-70% decrease under heavy 1/O.

Xen also supports “HVM” (hardware virtual machine) modejathis equivalent to what VMware
[11], QEMU [9], Bochs [LO] and similar systems provide: nearly perfect emulationhef x86
architecture and some standard peripherals. The advargdpat an uncooperative guest OS
never knows it’s running in a virtual machine: Windows XP &malc OS X have been successfully
run inside Xen in this mode. Unfortunately, this mode has B kvewn performance cost, even
when Xen leverages the specialized hardware support fbwiftihalization in newer Intel 14]
and AMD [15] chips. The overhead comes from the requirement that therfngor still trap and
emulate all sensitive instructions, whereas paravirtedliguests can intelligently batch together
requests in one hypercall and can avoid virtual device doverhead.

62

Chapter 13

Getting Started with PTLsIm/X

NOTE: This part of the manual is relevant only if you are using tHedystem PTLsim/X. If you
are looking for the userspace-only version, please skgpehiire part and read Pdktinstead.

WARNING: PTLsim/X assumes fairly high level of familiarity with bothe Linux kernel and
Xen. If you have never compiled your own Linux kernel or if yate not yet running Xen or are
unsure how to create and use domaBEOP NOW and become familiar with Xen itself before
attempting to use PTLsim/X. The following sections all asswyou are familiar with Xen, at least
from a system administration perspective.

13.1 Building PTLsim/X

Prerequisites:

e PTLsim/X requires anodern 64-bit x86-64 machine This means an AMD Athlon 64 /
Opteron/ Turion or an Intel Pentium 4 (specifically with EMg4r Intel Core 2 We donot
plan to offer a 32-bit version of PTLsim/X due to the techhaeficiencies in 32-bit x86 that
make it difficult to properly implement a full system simulatvith all of PTLsim’s features.
Besides, 64-bit hardware is now the standard (in some chsesriy option) from all the
major x86 processor vendors and is very affordable.

e The 64-bit requiremerdnly applies to the host system running PTLsim/X. Inside theuwgirt
machine, you are still free to use standard 32-bit Linuxritistions, applications and so
forth under PTLsim/X

e PTLsim/X assumes you have root access to your machine. ThsifalX hypervisor runs
below Linux itself, so you must use a Xen compatible kerneti@main O (more on this
later).

e We highly recommengou use a Linux distribution already designed to work wit>3ex.
We use SUSE 10.2 and highly recommend it; most other disiifisinow support Xen. This
requirement only applies to domain O - the virtual machin@slyybe running can use any

63

distribution and do not even need to know about Xen at allgjothan the kernel, which
much support Xen hypercalls and block/network drivers).

e aWe have successfully built PTLsim/X with gcc 3.4.x andxtXgcc 4.0.x has documented
bugs affecting some of our code).

Quick Start Steps:
All files listed below can be downloaded fromp://iwww.ptlsim.org/download.php

1. Set up Xen with PTLsim/X extensions:

e Downloadour modified Xen source tregen-ptlsim-rXXXXX.tar.bz2) from http://www.ptlsim.org/do
This is the easiest way to make sure you have the correct RiFtsmpatible version
of Xen with all patches pre-applied.

— We also provideptlsim-xen-hypervisor.diff in case you want to manually
apply the patches to a development version of Xen; the pstatesfairly simple
and can be adapted as needed.

¢ Build and install both the Xen hypervisor and the userspace Xen tools:

— In xen-unstable.hg/xen , runmake, and copy theen binary to your boot volume
— In xen-unstable.hg/tools , rtunmake, then runmake install
e Downloadour sample kernel and moduldisix-2.6.20-mtyrel-64bit-xen.tar.bz2)

and extract in the root directory to credt@modules/2.6.20-mtyrel-64bit-xen/....

— This is a SMP kernel based on 2.6.20 with the Xen patches aiaéd by SUSE
Linux. The complete source isiinux-2.6.20-mtyrel-64bit-xen-source.tar.gz :
if you want to recompile it.

— This is just a sample kernel we use - PTLsim/X should work af/gou use the
Xen-compatible kernel shipped with your Linux distributiof choice. However,
we recommend you run this same kernel in domain 0 as well &gitatget domain
under simulation, simply because we know it works correatigl has all the latest
Xen patches.

e Reboot and make sure the PTLsim/X extensions to Xen are actuatiging: “cat
Isys/hypervisor/properties/capabilities "should list “ptlsim "
2. Set up sample virtual machine and disk images:
e Downloadour pre-configured 256 MB disk imaggtiéim.img.bz2) and uncompress
with bunzip2. The sample scripts below expect this file taligrbject/ptisim/ptisim.img

— We recommend placing this disk image on a local hard dislerdttan NFS. It will
not mount correctly over NFS unless the root_squash NFS option is used.

e You have already downloaded our Xen-compatible kernel @bov

64

e Download the Xen configuration filetvm) and put it in/etc/xen/ptivm . By de-
fault, this configuration file specifies a 128 MB example domasing the kernel and
disk image above as the root filesystem.

e Make sure you can create this domaim®create ptvm -c ”. You should get a con-
sole with the text “Welcome to the PTLsim Demo Machine”.

3. Setup PTLsim itself:

e Download the stable version of PTLsim from our web siteigim-2007xxxx-rXXX.tar.gz
and unpack this file to create thésim directory.

e Edit the PTLsimMakefile and uncomment thePTLSIM_HYPERVISOR=I line to en-
able PTLsim/X support.
e Runmake.

— Ifthe build process complains about missing header filekeraaregusr/include/xen
is a symlink ta/project/xen-unstable.hg/tools/libxc/xen (or wherever you
put the PTLsim-modifieden-unstable.hg tree you downloaded). Deleir/include/xen
beforehand if needed.

13.2 Running PTLsim

PTLsim is run in domain O as root, for instance by using th&d ptisim ... " command.
The-domain N option is used to specify the domain to access. The followtenarios show by
example how this is done.

13.3 Booting Linux under PTLsim

In the following examples, we will assume the Xen configunatior the target domain is in the
text file /etc/xen/ptivm . Edit /etc/xen/ptivm as needed, based on the example downloaded
above.

Start your domain as follows:

sudo xm create domainname --paused
sudo xm list
sudo xm console domainname

The--paused option tells Xen to pause the domain as soon as it’s creategle £an run the entire
boot process under PTLsim.

Thexm list command will print the domain ID assigned jigvm . On our test machine, the
output looks like:

65

yourst [typhoon /project/ptlsim] sudo xm create ptlvm --pa used; sudo xm list; sudo xm
Using config file "ptlvm".
Started domain ptlvm

Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 1877 2 r----- 137.9
ptlvm 21 128 1 --p-- 0.0

You may also want to give the PTLsim domain a low priority;erhise it may cause the system
to respond slowly. This can be done by adding:

sudo xm sched-credit -d ptlvm -w 16

Open another console and start PTLsim on this domain (ubiagidmain ID “21” given in the
example above):

sudo ./ptlsim -domain 21 -logfile ptlsim.log -native

The resulting output:

1
/I PTLsim: Cycle Accurate x86-64 Full System Simulator
/[Copyright 1999-2006 Matt T. Yourst <yourst@yourst.com>
1
/I Revision 165 (2006-09-15)
/[Built Oct 8 2006 02:49:42 on tidalwave.lab.ptlsim.org us ing gcc-4.1
/I Running on typhoon.lab.ptlsim.org
1
Processing -domain 21 -logfile ptlsim.log -native
System Information:
Running on hypervisor version xen-3.0-x86_64-ptlsim
Xen is mapped at virtual address 0xffff800000000000
PTLsim is running across 1 VCPUs:
VCPU 0: 2202 MHz
Memory Layout:

System: 524208 pages, 2096832 KB

Domain: 32768 pages, 131072 KB

PTLsim reserved: 8192 pages, 32768 KB

Page Tables: 275 pages, 1100 KB

PTLsim image: 407 pages, 1628 KB

Heap: 7510 pages, 30040 KB

Stack: 256 pages, 1024 KB
Interfaces:

PTLsim page table: 282898

Shared info mfn: 4056

Shadow shinfo mfn: 295164

PTLsim hostcall: event channel 3

PTLsim upcall: event channel 4

Switched to native mode

66

Back in the Xen console for the domain, you'll see the familimux boot messages:

Bootdata ok (command line is nousb noide root=/dev/hdal xen cons=ttyS console=ttyS0)
Linux version 2.6.18-mtyrel-k8-64bit-xen (yourst@tidal wave) (gcc version 4.1.0 (SUSE Linux)
BIOS-provided physical RAM map:
Xen: 0000000000000000 - 0000000008800000 (usable)
No mptable found.
Built 1 zonelists. Total pages: 34816
Kernel command line: nousb noide root=/dev/hdal xencons=t tyS console=ttyS0
Initializing CPU#0
PID hash table entries: 1024 (order: 10, 8192 bytes)
Xen reported: 2202.808 MHz processor.
Console: colour dummy device 80x25

Dentry cache hash table entries: 32768 (order: 6, 262144 byt es)

Inode-cache hash table entries: 16384 (order: 5, 131072 byt es)

Software 10 TLB disabled

Memory: 123180k/139264k available (2783k kernel code, 772 8k reserved, 959k data, 184k
Calibrating delay using timer specific routine.. 4407.14 B 0goMIPS (Ipj=2203570)

NET: Registered protocol family 1

NET: Registered protocol family 17

VES: Mounted root (ext2 filesystem) readonly.
Welcome to the PTLsim demo machine!

root [ptlsim /] cat /proc/cpuinfo

You'll notice how we specified the-fiative " option to speed up the boot process by running all
code on the real CPU rather than PTLsim’s synthetic CPU moBebting Linux within PTL-
sim is slow since the kernel often executes several billistructions before finally presenting a
command line.

13.4 Running Simulations: PTLctl

At this point, we would like to start an actual simulation rifor purposes of illustration, this run
is composed of three actions:

e Simulate 100 million x86 instructions using PTLsim’s outosfler superscalar model

e Simulate another 100 million using PTLsim’s sequential glodThe sequential model is
much faster than the out of order superscalar model, sos€fulifor testing and debugging
functional issues, as well as simply interacting with thenda. However, it does not collect
any cycle accurate timing data. Secti@d gives more information on the sequential model.

e Return to native mode

In the first example, we will start this run from within the ning domain usingtictt (PTLsim
controller), a program supplied with PTLsim. PTLctl is aadty an example program showing

67

the use of PTLsim hypercalls (“PTL calls”), special x86 mstions that can be used to control a
domain’s own simulation. More information on the PTLcall IA®Rin Section14.4

To conduct this simulation, thetictt command is usedithin the running virtual machine (by
typing it at the domain’s console); it is not run on the hostsyn at all:

root [ptlsim /] tar zc usr lib | tar ztv > /tnp/allfiles.txt &
[1] 775
root [ptlsim /] ptlctl -core ooo -stopinsns 100m-run : -core seq -stopinsns 200m-ru

Sending flush and command list to PTLsim hypervisor:
-core 000 -stopinsns 100m -run
-core seq -stopinsns 200m -run
-native

PTLsim returned rc O

root [ptlsim /]

The first command simply runs several CPU-intensive mhhed@ded processes in the background
for simulation purposes (in this case, compressing andmapoessing files in the virtual machine’s

filesystem).
The secongtlictt command submits the three simulation actions to PTLsinmgrsged by colons
(H: H).

At the PTLsim console, the following output is produced (tkiele counters will update regularly):

Breakout request received from native mode
Switched to simulation mode

Returned from switch to native: now back in sim

Processing -core 0oo -stopinsns 100m -run

Completed 75258330 cycles, 100000000 commits: 461819 cycl es/sec,
Processing -core seq -stopinsns 200m -run
Completed 200000000 cycles, 200000000 commits: 6941302 cy cles/sec,

Processing -native
Switched to native mode

Notice how the command list is always terminated by a finalutition action (in this case,
-native). If the command list only had one simulation run with a fixagtation, once that simu-
lation ended, the domain would freeze, since PTLsim wouldgpaintil another command arrived.
However, since the domain is frozen, the next command woelekrarrive: there is no way to
execute thetlctt program a second time if the domain is stopped. To avoid tntso$ deadlock,
ptictt lets the user atomically submit batches of multiple comnsagishown ahove.

This powerful capability allows “self-directed” simulati scripts (i.e. standard shell scripts), in
whichptlctl is run immediately before starting a benchmark programm pietl is run again
after the program exits to end the simulation and switch baclative mode.

68

795

69413

13.5 PTLsim/X Options

In Section10.3 the configuration options common to both userspace PTLsithfall system
PTLsim/X wer listed. PTLsim/X also introduces a number aécpl options only applicable to
full system simulation:

Actions:

® -run
Start a simulation run, using the core model specified bydtve option (the default core
is “000").

e -stop

Stop the simulation run currently in progress, and wait tottfer commands. This is gener-
ally issued from another console window.

e -native
Switch the domain to native mode.
o -kill

Kill the domain. This is equivalent taxin destroy ”, but it also allows PTLsim to perform
cleanup actions and flush all files before exiting.

13.6 Live Updates of Configuration Options

PTLsim/X provides the ability to send commands and modifgfiguration options in the run-
ning simulation from another console on the host systems iBhdlifferent from how thetictl
program is used inside the target domain to script simuiation this case, the commands are
submitted asynchronously from the host system.

For instance,

sudo ptlsim -native -domain 21

will immediately switch the target domain back to native raod
To reset the log level in the middle of a simulation run, useftilowing:

sudo ptlsim-domain 21 -1oglevel 99 : -run
ptlsim: Sending request ’-domain 12 -loglevel 99 : -run’ to d omain 12...0K

(This is an example only! Usingpglevel 99 will create huge log files).
Most options (such asoglevel , -stoprip , etc.) can be updated at any time in this manner.
To end a simulation currently in progress, use this:

sudo ptlsim -domain 21 -kill

This will force PTLsim to cleanly exit.
69

13.7 Command Scripts

PTLsim supporteommand scriptdn which a file containing a list of commands is passed on the
PTLsim command line as follows:

sudo ./ptlsim -domain N @ptlvm.cmd

whereptivm.cmd ~ (specified following the & operator) contains the example lines:

Configuration options:

-logfile ptlsim.log -loglevel 4 -stats ptlsim.stats -snap shot-cycles 10m
Run the simulation

-core seq -run -stopinsns 20m

-core 000 -run -stopinsns 100m

-native # All done (switch to native mode)

These commands are executed by PTLsim one at a time, walititiigtive previous command
completes before starting the next. Notice the use of consntarting with %), and how
configuration options can be spread across lines if desligd.mode is very useful for specifying
breakpoints usingstoprip and similar options; when the target RIP is reached, the lsion
stops and the next command in the command list is executed.

Command scripts can be nested (i.e. a script can itselfdecbiher scripts usin@scriptname).
When multiple commands are given on the command line segghbgtcolons ("), any @scriptname
clauses are processed after all other commands on the cahiiman

13.8 Working with Checkpoints

Xen provides the ability to capture the state of a domain atiheckpoint filestored on disk.
PTLsim can leverage this capability to start simulatiomfra checkpoint, avoiding the need to
go through the entire boot process, and allowing precisgbyaducable results across multiple
simulation runs.

To create a checkpoint, boot the domain in native mode witRdlLsim running, and bring the
domain to the point where you would like to begin simulati®hen, in another console, run:

sudo xm save ptlvm /tmp/ptivm.img
Started domain ptlvm

To restore the domain to that checkpoint, run:

sudo xm restore /tmp/ptivm.img --paused
sudo xm list
sudo xm console ptlvm

PTLsim can then be started in the normal manner, by spegifgiomain X (according to the
output ofxm list). If the checkpoint was made while the domain waited for tr{eug. at a shell
command line), you may have to press a few keys to get anymesgdoom its console.

To exit PTLsim, use $udo ptlsim -kill -domain X ” from another console. To abort PTLsim
immediately, use Ctrl+C on the ptlsim process, then tyae kill ptvm " to destroy the domain.

70

13.9 The Nature of Time

Full system simulation poses some difficult philosophiasstions about the nature of time itself
and the relativistic phenomenon of “time dilation”. Spegafly, if a simulator runs X times slower
than the native CPU, both external interrupts and timeriafes should theoretically be generated
X times slower than in the real world. This is critical for alsting accurate simulation results: for
events like network traffic, if a real network device fed migpts into the domain in realtime, and
the simulator injected these interrupts into the simuraibthe same rate, they would appear to
arrive thousands of times faster than any physical netwaefiace could deliver them. This can
easily result in a livelock situation not possible in a reaadhmine; at the very least it will deliver
misleading performance results.

On the other hand, interacting with a domain running at theréct” rate according to its own
simulated clock can be unpleasant for users. For instahtee I'sleep 1 ” command is run in

a Linux domain under PTLsim, instead of sleeping for 1 seaninaall clock time (as perceived
by the user), the domain will wait until 1 billion cycles haween fully simulated (assuming the
simulated processor frequency is 1 GHz). This is becausesiRTkeys interrupt delivery and
all timers to the simulated cycle number in which the intptrshould arrive (based on the core
clock frequency). In addition to being annoying, this bebawill massively confuse network
applications that rely on precise timing information: a TlPRendpoint outside the domain will not
expect packets to arrive thousands of times slower thamitsrealtime clock expects, resulting in
retransmissions and timeouts that would never occur if bottpoints were inside the same “time
dilated” domain.

Rather than attempt to solve this philosophical dilemmad, gt allows users to choose the options
that best suit their simulation accuracy needs. The foligwoptions control the notion of time
inside the simulation:

e -corefreq Hz

Specify the CPU core frequency (in Hz) reported to the domBarspecify a 2.4 GHz core,
use ‘“corefreq 2400m ”. This option is used to calculate the number of cycles betwe
timer interrupts, as described below.

NOTE:If you plan on switching the domain between simulation artevreanode, we strongly
recommend avoiding this option, to allow the host machiegudency to match the simulated
frequency.

e -timerfreq Hz

Specify the timer interrupt frequency in interrupts percset By default, 100 interrupts per
second are used, since this is the standard for Linux kernels

Hint: if keyboard interaction with the domain seems slow or slalygihis is because Linux
only flushes console buffers to the screen at every clock 8plecifying-timerfreq 1000
will greatly improve interactive response at the expensaafe interrupt overhead.

e -pseudo-rtc

71

By default, the realtime clock reported to the domain is tineent time of day. This option
forces the clock to reset to whatever time the domain’s gbeicit (if any) was created. This
may allow better cycle accurate reproducibility of randommiver generators, for instance.

e -realtime

PTLsim normally delivers all interrupts at the time dilatedle, as described above. While
this provides the most realistic simulation accuracy, iyrha undesirable for some appli-
cations, particularly in networking. Theealtime option delivers external interrupts to
the domain as soon as they arrive at PTLsim’s interrupt leainttiey are not deferred. The
realtime clock reported to the domain is also not dilater; lincked to the current wall clock
time. This option does not affect the timer interrupt fregqee use thetimerfreq option
to directly manipulate this.

e -maskints

Do not allowanyexternal interrupts or events to reach the domain; onlyithertinterrupt
is delivered at the specified rate by PTLsim. This mode is s&a1® to provide guaranteed
reproducable cycle accurate behavior across runs; itmdites almost all non-deterministic
events (like outside device interrupts) from the simulatidowever, it is not very practical,
since disk and network access is impossible in this modeddime Xen disk and network
drivers could never wake up the domain when data arrivesjs Mlode is most useful for
debugging starting at a checkpoint, or when using a ramdigkpre-scripted boot actions.

13.10 Other Options

PTLsim/X has a few additional options related to full systamulation:

e -reservemem M

Reserve$/! megabytes of physical memory for PTLsim and its translatexhe. The default
is 32 MB; the valid range is from 16 MB to 512 MB. See Chagtéfor details.

All other options in Sectiod0.3(unless otherwise noted) are common to both userspace IATLSI
and full system PTLsim/X.

72

Chapter 14

PTLsim/X Architecture Detalls

The following sections provide insight into the internathkitecture of full system PTLsim/X,
and how a simulator is built to run on the bare hardware. Itosnmecessary to understand this
information to work with or customize machine models in Pifi,sbut it may still be fascinating
to those working with the low level infrastructure compotsen

14.1 Basic PTLsim/X Components

PTLsim/X works in a conceptually similar manner to the noroserspace PTLsim: the simulator
is “injected” into the target user process address spaceféextively becomes the CPU executing
the process. PTLsim/X extends this concept, but insteadoobeess, the core PTLsim code runs
on the bare hardware and accesses the same physical mergesyqvened by the guest domain.
Similarly, each VCPU is “collapsed” into a context struetwithin PTLsim when simulation
begins; each context is then copied back onto the corresppmpihysical CPU context(s) when
native mode is entered.

PTLsim/X consists of three primary components: the modiXed hypervisor, the PTLsim mon-
itor process, and the PTLsim core.

14.1.1 Xen Modifications

The Xen hypervisor requires some modifications to work with.$tm. Specifically, several new
major hypercalls were added:

e XEN_DOMCTL_contextswap atomically swaps all context information in all VCPUs of the
target domain, saving the old context and writing in a newtexmn In addition to per-VCPU
data (including all registers and page tables), the sharfedpage is also swapped. This
is done as a hypercall so as to eliminate race conditionsdesgtwthe hypervisor, PTLsim
monitor process in domain 0 and the target domain. The doisdirst de-scheduled from
all physical CPUs in the host system, the old context is savednew context is validated
and written, and finally the paused domain wakes up to the oextext.

73

e MMUEXT_GET_GDT_TEMPLAgEts the x86 global descriptor table (GDT) page Xen transpar
ently maps into the&IRST_RESERVED_GDT_PAGE gdt_frames[] slot. PTLsim needs this
data to properly resolve segment references.

e MMUEXT_QUERY_PAGHSBeries the page type and reference count of a given guest MFN

e VCPUOP_set_breakout_insn_action tells the hypervisor about a speckakout instruc-
tion. This is a normally undefined x86 instruction that thiett program (and PTL calls
from user code) can use to request services from PTLsim. Yperhisor uses the x86 in-
valid opcode trap to intercept this instruction, and in cesge it may perform several actions,
including pausing the domain and sending an interrupt toadom for the PTLsim monitor
process to receive. This is the mechanism by which a domairatipg in native mode can
request a switch back into simulation mode.

e VCPUOP_set_timestamp_bias IS used to virtualize the processor timestamp counter (TSC)
read by the x86dtsc instruction. This support is needed to ensure a seamlasstioan
between simulation mode and native mode without the targetaih noticing any cycles
are missing. Since PTLsim runs much slower than the nativd,@Pnegative bias must
be applied to the TSC to provide timing continuity when reing to native mode. The
hypervisor will traprdtsc instructions and emulate them when a bias is in effect.

These changes are provided fgim-xen-hypervisor.diff as described in the installation
instructions.

14.1.2 PTLsim Monitor (PTLmon)

The PTLsim monitor gtimon.cpp is a normal Linux program that runs in domain 0 with root
privileges. After connecting to the specified domain, ireases the domain’s memory reservation
SO as to reserve a range of physical pages for PTLsim (by deBUMB of physical memory).
PTLmon maps all these reserved pages into its own address,spal loads the real PTLsim core
code into these pages. The PTLsim core is linked separasgdyan.bin but is then linked as

a binary object into the final self-contain@tlsim executable. PTLmon then builds page tables
to map PTLsim space into the target domain. Finally, PTLmbs ifn various other fields in
the boot info page (including a pointer to tl@®ntextstructures (a modified version of Xen’'s
vcpu_context)tholding the interrupted guest’s state for each of its VCReepares the initial
registers and page tables to map PTLsim’s code, then unntiap§lasim reserved pages except
for the first few pages (as shown in Taldlé.1). This is required since the monitor process cannot
have writable references to any of PTLsim’s pages or PTLsay not be able to pin those pages
as page table pages. At this point, PTLmon atomically resstae domain inside PTLsim using
the newcontextswap hypercall. The old context of the domain is thus availableH®Lsim to
use and update via simulation.

PTLmon also sets up two event channels: hlostcallchannel and thepcall channel. PTLsim
notifies the monitor process in domain 0 via thastcallevent channel whenever it needs to access
the outside world. Specifically, PTLsim will fill in thieootpage.hostregtructure with parameters

74

to a standard Linux system calls, and will place any largdiebsiin thetransfer paggsee Table
14.1) visible to both PTLmon and PTLsim itself. PTLsim will thewtify the hostcallchannel’'s
port. The domain 0 kernel will then forward this notificatitmPTLmon, which will do the sys-
tem call on PTLsim’s behalf (while PTLsim remains blockedhe synchronous_host_call()
function). PTLmon will then notify the hostcall port in theposite direction (waking up PTLsim)
when the system call is complete. This is very similar to agtenprocedure call, but using shared
memory. It allows PTLsim to use standard system calls (eog.rdading and writing log files)
without modification, yet remains suitable for a bare-metabedded environment.

PTLmon can also use thupcallchannel to interrupt PTLsim, for instance to switch betweative

and simulation mode, trigger a snapshot, or request thasiATupdate its internal parameters.
The PTLmon process sets up a sockettitp/ptisim-domain-XXX and waits for requests on
this socket. The user can then run thieim command again, which will connect to this socket
and tell the main monitor process for the domain to enquewatastring (usually the command
line parameters tptlsim) and send an interrupt to PTLsim on thpcall channel. In response,
PTLsim uses theCCEPT_UPCALIhostcall to read the enqueued command line, then parsed it an
acts on any listed actions or parameter updates.

It should be noted that this design allows live configuratipdates, as described in Sectidha

14.2 PTLsim Core

PTLsim runs directly on the “bare metal” and has no accessaftittonal OS services except
through the DMA and interrupt based host call requests destrabove. Execution begins in
ptlsim_init() in ptixen.cpp PTLsim first sets up its internal memory management (pa@s, po
slab allocator, extent allocator mm.cppas described in Sectioh3) using the initial page tables
created by PTLmon in conjunction with the modified Xen hypsox PTLsim owns the virtual
address space range startingtffff0000000000 (i.e. x86-64 PML4 slot 510, of* bytes).
This memory is mapped to the physical pages reserved foriRT e layout is shown in Table
14.1(assuming 32 MB is allocated for PTLsim):

Starting at virtual addre$fffffe0000000000 (i.e. x86-64 PML4 slot 508, af*’ bytes), space is
reserved to map all physical memory pages (MFNs) belonginige guest domain. This mapping
is sparse, since only a subset of the physical pages aresduedsy the guest. When PTLsim is
first injected into a domain, this space starts out empty. &sous parts of PTLsim attempt to
access physical addresses, PTLsim’s internal page fautliérawill map physical pages into this
space. Normally all pages are mapped as writable, howevenm&s not allow writable mappings
to some types of pinned pages (L1/L2/L3/L4 page table pa@8d, pages, etc.). Therefore, if
the writable mapping fails, PTLsim tries to map the page ad mnly. PTLsim monitors memory
management related hypercalls as they are simulated arapsephysical pages as read-only or
writable if and when they are pinned or unpinned, respelgti/hen PTLsim switches back to
native mode, it quickly unmaps all guest pages, since weatamold writable references to any

75

Table 14.1: Memory Layout for PTLsim Space

| Page| Size| Description

(Pages below this point are shared by PTLmon in domain 0 ahgiRilin the target domain)

4K | Boot info page and ptlxen.bin ELF header (eeptlsim.randptlxen.hfor the structures

4K | Hypercall entry points (filled in by Xen)

4K | Shared info page for the domain

4K | Shadow shared info page (as seen by guest)

4K | Transfer page (for DMA between PTLmon in domO and target)

g B W N O

128K | 32 VCPU Context structure pages

(Pages below this point are private to PTLsim in the targetaio)

37| ~2M | PTLsim binary

- | ~28M | PTLsim heap (page pool, slab allocator, extent allocator)

- | ~256K | PTLsim stack

~64K | Page tables mapping 32 MB PTLsim space

~1MB | Page tables (level 1) mapping all physical pages (resenveddi filled in)

(32MB) | ~64K | Higher level page tables (levels 4/3/2) pointing to othétda

pages the guest kernel may later attempt to pin as page t@afpéspThis unmapping is done very
quickly by simply clearing all present bits in the physicaprs L2 page table page; the PTLsim
page fault handler will re-establish the L2 entries as néede

14.3 Implementation Details

14.3.1 Page Translation

The Xen-x86 architecture always has paging enabled, soiRiTuses a simulated TLB for all
virtual-to-physical translations. Each TLB entry has x86essed and dirty bits; whenever these
bits transition from 0 to 1, PTLsim must walk the page tabéetand actually update the corre-
sponding PTE’s accessed and/or dirty bit. Since page tagegpare mapped read-only, our mod-
ified update_mmunypercall is used to do this. TLB misses are serviced in thenabx86 way:
the page tables are walked starting from the MFN in CR3 umilgage is resolved. This is done
by theContext.virt_to_pte() method, which returns the L1 page table entry (PTE) progdin
the physical address and accumulated permissions (x8bkasis rules for deriving the effective
writable/executable/supervisor permissions for eactepanternally, thepage_table_walk()
function actually follows the page table tree, but PTLsimntans a small 16-entry direct mapped
cache (like a TLB) to accelerate repeated translations {shinot related to any true TLB main-
tained by specific cores). Thee_to_ptl_virt() function then translates the PTE and origi-
nal virtual address into a pointer PTLsim can actually asdesside PTLsim’s mapping of the
domain’s physical memory pages). The software TLB is alssh#a under the normal x86 con-
ditions (MOV CR3WBINVD INVLPG, and Xen hypercalls likeMUEXT_NEW_BASE_PTRresently
TLB support is indcache.cpp ; the features above are incorporated into this TLB. In aoldljt

76

Context.copy_from_user() andContext.copy_to_user() functions are provided to walk the
page tables and copy user data to or from a buffer inside PBT.Lsi

In 32-bit versions of Xen, the x86 protection ring mechanismised to allow the guest kernel
to run at ring 1 while guest userspace runs in ring 3; thisaalthe “supervisor” bit in PTEs to
retain its traditional meaning. However, in its effort teah up legacy ISA features, x86-64 has no
concept of privilege rings (other than user/supervisogegmentation. This means the supervisor
bit in PTEs is never set (only Xen internal pages not acckssibguest domains have this bit
set). Instead, Xen puts the kernel in a separate address fpat user mode; the top-level L4
page table page for kernel mode points to both kernel-ordyumer pages. Fortunately, Xen uses
TLB global bits and other x86-64 features to avoid much ofdbwtext switch overhead from this
approach. PTLsim does not have to worry about this detaihdurirtual-to-PTE translations: it
just follows the currently active page table based on playsiddresses only.

14.3.2 Exceptions

Under Xen, theset_trap_table() hypercall is used to specify an array of pointers to exceptio
handlers; this is equivalent to the x86 LIDT (load interrdpescriptor table) instruction. When-
ever we switch from native mode to simulation mode, PTLmopie® this array back into the
Context.idt[] array. Whenever PTLsim detects an exception during sinoumait accesses
Context.idt[vector_id] to determine where the pipeline should be restarted (C$.RiRhe
case of page faults, the simulated CR2 is loaded with theifguVirtual address. It then con-
structs a stack frame equivalent to Xen'’s structure (ie@.context) at the stack segment and
pointer stored irContext.kernel_sp (previously set by thatack_switch() hypercall, which
replaces the legacy x86 TSS structure update). FinallysiRiilpropagates the page fault to the
selected guest handler by redirecting the pipeline. Thesgentially the same work performed
within Xen by thecreate_bounce_frame() function, do_page_fault() (or its equivalent) and
propagate_page_fault() (or its equivalent); all the same boundary conditions mesténdled.

14.3.3 System Calls and Hypercalls

On 64-bit x86-64, theyscall instruction has a different meaning depending on the coriex
which it is executed. If executed from userspasgscallarranges for execution to proceed di-
rectly to the guest kernel system call handler isntext.syscall_rip). This is done by the
assist_syscall() microcode handler. A similar process occurs when a 32-lgliegtion uses
“int 0x80 " to make system calls, but in this casegntext.propagate_x86_exception() is
used to redirect execution to the trap handler registenethé& virtual software interrupt.

If executed from kernel space, thgscall instruction is interpreted as a hypercall into Xen itself.
PTLsim emulates all Xen hypercalls. In many simple casetsskT handles the hypercall all by

itself, for instance by simply updating its internal tablés other cases, the hypercall can safely
be passed down to Xen without corrupting PTLsim’s intertales We must be very careful as
to which hypercalls are passed through: for instance, befipdating the page table base, we
must ensure the new page table still maps PTLsim and thegaiysidress space before we allow

77

Xen to update the hardware page table base. These casekdweuahented in the comments of
handle_xen_hypercall()

Note that the definition of “user mode” and “kernel mode” isimi@ned by Xen itself: from the
CPU's viewpoint, both modes are technically userspace améhrring 3.

An interesting issue arises when PTLsim passes hyperbatisgh to Xen: some buffers provided

by the guest kernel may reside in virtual memory not mapped®Dlysim. Normally PTLsim
avoids this problem by copying any guest buffers into its edldress space usiggntext.copy_from_user()
then copying the results back after the hypercall. Howeweeavoid future complexity, PTLsim
currently switches its own page tables every time the guspiasts a page table switch, such
that Xen can see all guest kernel virtual memory as well assiitlitself. Obviously this means
PTLsim injects its two top-level page table slots into evgungst top level page table. For multi-
processor simulation, PTLsim needs to swap in the targetW<Ppage table base whenever it
forwards a hypercall that depends on virtual addresses.

14.3.4 Event Channels

Xen delivers outside events, virtual interrupts, IPIs, &a¢he domain just like normal, except they
are redirected to a special PTLsim upcall handler stulbievel-64bit-xen.S). The handler
checks which events are pending, and if any events (otherttt@PTLsim hostcall and upcall
events) are pending, it sets a flag so the guest’s event laedie/oked the next time through
the main loop. This process is equivalent to exception hiagdh terms of the stack frame setup
and call/return sequence: the simulated pipeline is simgdyrected to the handler address. It
should be noted that the PTLsim handler does not set or clsamask bits in the shared info
page, since it's the (emulated) guest OS code that shouldlacbe doing this, not PTLsim. The
only exception is when the event in question is on the hdgtoal or the upcall port; then PTLsIim
handles the event itself and never notifies the guest.

14.3.5 Privileged Instruction Emulation

Xen lets the guest kernel execute various privileged iesitvas, which it then traps and emu-
lates with internal hypercalls. These are the same as insxach/x86/traps.c: CLTS (FPU task
switches), MOV from CR0O-CR4 (easy to emulate), MOV to anarfidR0-DR7 (get or set debug
registers), RDMSR and WRMSR (mainly to set segment basel)sif decodes and executes
these instructions on its own, just like any other x86 insion.

14.4 PTLcalls

PTLsim defines the special x86 opca¥ef37 as a breakout opcode. It is undefined in the normal
x86 instruction set, but when executed by any code runnirdgu®TLsim, it can be used to
engqueue commands for PTLsim to execute.

78

Theptlctl program uses this facility to switch from native mode to detion mode as follows.
Whenever PTLsim is about to switch back to native mode, i tis&/CPUOP_set_breakout_insn_action
to specify the opcode bytes to intercept. When the hypergises an invalid instruction matching
0x0f37 , it freezes the domain and sends an event channel notificetidomain 0. This event
channel is read by PTLmon, which then usesddeextswap hypercall to switch back into PTL-
sim inside the domain. PTLsim then processes whatever cohiwaused the switch back into
simulation mode.

While executingvithin simulation mode, this is not necessary: since PTLsim isimmete control

of the execution of each x86 instruction, it simply definesnmcode to handlexof37 instead of
triggering an invalid opcode exception. This microcodenbhees into PTLsim, which uses the
PTLSIM_HOST_INJECT_UPCALLhostcall to add the command(s) to the command queue. Thequeu
is maintained inside PTLmon so as to ensure synchronizb&tween commands coming from the
host and commands from within the domain arriving via PTlscalhe queue is typically flushed
before adding new commands in this manner: otherwise, ildvo@ impossible to get immediate
results usingtictl

All PTL calls are defined ipticalls.h , Which simply collects the call’'s arguments and executes
opcodeoxof37 as if it were a normal x86yscall instruction:

e ptlcall_multi_enqueue(const char = list[], size_t length) enqueues a list of com-
mands to process in sequence

e ptlcall_multi_flush(const char = list[], size_t length) flushes the queue before
adding the commands

e ptlcall_single_enqueue(const char + command) adds one command to the end of the
queue
e ptlcall_single_flush(const char = command) immediately flushes the queue and pro-

cesses the specified command
e ptlcall_nop() is a simple no-operation command used to get PTLsim’s abient

e ptlcall_version() returns version information about the running PTLsim hyjsar.

Thepticall ~ opcodeox0f37 can be executed from both user mode and kernel mode, sin@yit m
be desirable to switch simulation options from a userspasgram. This would be impossible if
wrmsr (the traditional method) were used to effect PTLsim opersti

14.5 Event Trace Mode

In Section13.9 we discussed the philosophical question of how to acclyratedel the timing
of external events when cycle accurate simulation runsséuods of times slower than the outside
world expects. To solve this problem, PTLsim/X offergent tracemode.

79

First, the user saves a checkpoint of the target domain,itis¢ructs PTLsim to entesvent record
mode. The domain is then used interactively in native modelledpeed, for instance by starting
benchmarks and waiting for their completion. In the backgay PTLsim taps Xen's trace buffers
to write any events delivered to the domain into an evenetfde. “Events” refer to any time-
dependent outside stimulus delivered to the domain, suchtasupts (i.e. Xen event channel
notifications) and DMA traffic (i.e. the full contents of anyagt pages from network or disk 1/0
transferred into the domain). Each event is timestampddtivé relative cycle number (timestamp
counter) in which it was delivered, rather than the wall klome. When the benchmarks are done,
the trace mode is terminated and recording stops.

The user then restores the domain from the checkpoint amgeets PTLsim, but this time PTL-
sim reads the event trace file, rather than responding to atsyde events Xen may deliver to the
domain while in simulation mode. Whenever the timestamghefdvent at the head of the trace
file matches the current simulation cycle, that event isctgi@ into the domain. PTLsim does
this by setting the appropriate pending bits in the sharépage, and then simulates an upcall
to the domain’s shared info handler (i.e. by restarting theukated pipeline at that RIP). Since
the event channels used by PTLsim and those of the targetidonay interfere, PTLsim main-
tains a shadow shared info page that’s updated instead;ewbetihe simulated load/store pipeline
accesses the real shared info page’s physical addressatevs page is used in its place. In addi-
tion, the wall clock time fields in the shadow shared info paigeregularly updated by dividing the
simulated cycle number by the native CPU clock frequencivacturing the record mode (since
the guest OS will have recorded this internally in many pace

This scheme does require some extra software support, wmoeed to be able to identify which
pages the outside source has overwritten with incoming(dataas in a virtual DMA). The console
I/O page is actually a guest page that domain 0 map®intonsolegthis is easy to identify and
capture. The network and block device pages are typicadigtgrages; the domain 0 Linux device
drivers must be modified to let PTLsim know what pages will beraritten by outside sources.

14.6 Multiprocessor Support

PTLsim/X is designed from the ground up to support multipteRUs per domain. Th®ntextof(vcpuid)
function returns the Context structure allocated for eaCiPV; this structure is passed to all func-
tions and assists dealing with the domain. It is the resjditgiof each core (e.g. sequential core,
out of order core, user-designed cores, etc.) to updatepiir@priate context structure according
to its own design.

VCPUs may choose to block by executing an appropriate hgfi€sched_block , sched_yield
etc.), typically suspending execution until an event asivPTLsim cores can simulate this by
checking thecontext.running field; if zero, the corresponding VCPU is blocked and no unstr
tions should be processed until thening flag becomes set, such as when an event arrives. In
realtime mode (where Xen relays real events like timer rofs back to the simulated CPU),
events and upcalls may be delivered to other VCPUs than ste/i@PU which runs PTLsim; in
this case, PTLsim must check the pending bitmap in the shafedpbage and simulate upcalls
within the appropriate VCPU context (i.e. whichever VCPUtaxt has itsipcall_pending bit

set).

80

Some Xen hypercalls must only be executed on the VCPU to wihiethypercall applies. In
cases where PTLsim cannot emulate the hypercall on its otemial state (and defer the actual
hypercall until switching back to native mode), the Xen hysor has been modified to support
an explicitvcpuparameter, allowing the first VCPU (which always runs PTL#Belf) to execute
the required action on behalf of other VCPUs.

For simultaneous multithreading support, PTLsim is desibio run the simulation entirely on the
first VCPU, while putting the other VCPUs in an idle loop. Tiesrequired because there’s no
easy way to parallelize an SMT core model across multipleiition threads. In theory, a multi-
core simulator could in fact be parallelized in this way, butould be very difficult to reproduce
cycle accurate behavior and debug deadlocks with asynchsosimulations running in different
threads. For these reasons, currently PTLsim itself islsitigeaded in simulation mode, even
though it simulates multiple virtual cores or threads.

Cache coherence is the responsibility of each core modeldeBgyult, PTLsim uses the “instant
visibility” model, in which all VCPUs can have read/write mies of cache lines and all stores
appear on all other VCPUs the instant they commit. More cemnpOESI-compliant policies
can be implemented on top of this basic framework, by s@Bimulated VCPUs until cache lines
travel across an interconnect network.

81

Part IV

Out of Order Processor Model

82

Chapter 15

Introduction

15.1 Out Of Order Core Features

PTLsim completely models a modern out of order x86-64 coifgaprocessor, cache hierarchy
and key devices with true cycle accurate simulation. Théclhmagroarchitecture of this model
is a combination of design features from the Intel PentiundAKID K8 and Intel Core 2, but
incorporates some ideas from IBM Power4/Power5 and Alph&8.EWhe following is a summary
of the characteristics of this processor model:

e The simulator directly fetches pre-decoded micro-openat{Sectiori7.1) but can simulate
cache accesses as if x86 instructions were being decodedabn f

e Branch prediction is configurable; PTLsim currently inadsdvarious models including a
hybrid g-share based predictor, bimodal predictors, aéihg counters, etc.

e Register renaming takes into account x86 quirks such asriéggsning (Sectiob.4)

e Front end pipeline has configurable number of cycles to siteuk86 decoding or other
tasks; this is used for adjusting the branch mispredictpena

¢ Unified physical and architectural register file maps botflight uops as well as committed
architectural register values. Two rename tables (spiegil@nd committed register rename
tables) are used to track which physical registers are wtlyrmapped to architectural reg-
isters.

e Unified physical register file for both integer and floatingmealues.

e Operands are read from the physical register file immedgidtefore issue. Unlike in some
microprocessors, PTLsim does not do speculative scheduhe schedule and register read
loop is assumed to take one cycle.

e Issue queues based on a collapsing design use broadcasthashing to wake up instruc-
tions.

83

e Clustered microarchitecture is highly configurable, allggvmulti-cycle latencies between
clusters and multiple issue queues within the same loglaater.

e Functional units, mapping of functional units to clustessue ports and issue queues and
uop latencies are all configurable.

e Speculation recovery from branch mispredictions and ktad¢ aliasing uses the forward
walk method to recover the rename tables, then annuls adl afdg@r and optionally including
the mis-speculated uop.

e Replay of loads and stores after store to load forwardingsaoie to store merging depen-
dencies are discovered.

e Stores may issue even before data to store is known; the stqres replayed when all
operands arrive.

e Load and store queues use partial chunk address matchingt@edmerging for high per-
formance and easy circuit implementation.

e Prediction of load/store aliasing to avoid mis-speculatiecovery overhead.
e Prediction and splitting of unaligned loads and stores todamis-speculation overhead

e Commit unit supports stalling until all uops in an x86 instian are complete, to make x86
instruction commitment atomic

The PTLsim model is fully configurable in terms of the sizekey structures, pipeline widths,
latency and bandwidth and numerous other features.

15.2 Processor Contexts

PTLsim uses the concept oA\&CPU (virtual CPU) to represent one user-visible microprocesso
core (or a hardware thread if a SMT machine is being modeld®Context structure (defined in
ptihwdef.n) maintains all per-VCPU state in PTLsim: this includes haglbr-visible architectural
registers (in th&ontext.commitarf[] array) as well as all per-core control registers and interna
state information.Context only contains general x86-visible context informationesific ma-
chine models must maintain microarchitectural state (tikgsical registers and so forth) in their
own internal structures.

Thecontextof(N) macro is used to return tlentext object for a specific VCPU, numbered O
to contextcount -1. In userspace-only PTLsim, there is only one contextiextof(0) . In full
system PTLsim/X, there may be up to 32 (iMaX_CONTEXT)Separate contexts (VCPUS).

84

15.3 PTLsim Machine/Core/Thread Class Hierarchy

PTLsim easily supports user defined plug-in machine modBig of these models, the out of
order core (600”) and the sequential in-order cores€ty ”) ship with PTLsim; others can be easily
added by users. PTLsim implements several C++ classes adeudiltl simulation models by

dividing a virtual machine into CPU sockets, cores and ithsea

The PTLsimMachine class is at the root of the hierarchy. Every simulation maodes$t subclass
PTLsimMachine and define its virtual methods. Adding a machine model to Riilisvery simple:
simply define one instance of your machine class in a soureéntiluded in the Makefile. For
instance, assumingyzMachine subclasseBTLsimMachine and will be called “xyz”:

XyzMachine xyzmodel(“xyz");

The constructor fokyzMachine will be called by PTLsim after all other subsystems are bhiug
up. It should use theddmachine(* name”) static method to register the core model’'s name with
PTLsim, so it can be specified using theote xyz” option.

The machine models included with PTLsim (hamelytofOrderMachine andSequentialMachine)
have been placed in their own C++ namespace. When addingoyaucore, copy the example
source file(s) to new names and adjust the namespace setfi@mew name to avoid clashes.
You should be able to link any number of machine models defimgtis manner into PTLsim all
at once.

The PTLsimMachine::init() method is called to initialize each machine model the firsteti

it is used. This function is responsible for dividing thent ext count contexts up into sockets,
cores and threads, depending entirely on the machine nsatédign and any configuration options
specified by theonfig parameter.

PTLsimMachine::run() is called to actually run the simulation; more details wéldpven on this
later.

PTLsimMachine::update_stats() is described in Sectiod.

PTLsimMachine::dump_state() is called to aid debugging whenever an assertion fails,ithe s

ulator accesses a null pointer or invalid address, or froyavlere else it may be useful.

85

Chapter 16

Out Of Order Core Overview

The out of order core is spread across several source files:

e ooocore.cpp contains control logic, the definition of tloitofOrderMachine class and its
functions (see Sectiobb.3), the top-level pipeline control functions, all event pimg logic
(Section16.1) and miscellaneous code.

e ooopipe.cpp contains all pipeline stages, except for execution stagéduanctional units.

e oooexec.cpp contains the functional units, load/store unit, issue gseteplay control and
exception handling.

e ooocore.h defines all structures and lists easy to configure parameters

TheoutOforderMachine ~ structure is divided into an array of one or ma@&OfOrderCore ~ Struc-
tures (by default, one per VCPU). TheatOfOrderMachine::init() function createsont ext count
cores and binds one per-VCRidntext structure to each core. Thet() function is declared
in ooocore.h , since some user configurable state is set up at this point.

TheoutOfOrderMachine::run() function first flushes the pipeline in each core, usiog.flush_pipeline()
to copy state from the correspondiagntext structure into the physical register file and other per-
core structures (see Sectidd.6for details).

Therun() function then enters a loop with one iteration per simulatgde:

e update_progress() prints the current performance information (cycles, cottediinstruc-
tions and simulated cycles/second) to the console andjdiiéo

e inject_events() injects any pending interrupts and outside events into thegssor; these
will be processed at the next x86 instruction boundary. Tingtion only applies to full
system PTLsim/X.

e TheoOutOfOrderCore::runcycle() function is called for each core in sequence, to step its
entire state machine forward by one cycle (see below forldgtdf a given core is blocked
(i.e. paused while waiting for some outside event), its €sntunning field is zero; in this
case, the core®sandle_interrupt() method may be called to wake it up (see below).

86

e Any global structures (like memory controllers or internent networks) are clocked by one
cycle using their respectivock() methods.

e check_for_async_sim_break() checks if the user has requested the simulation stop or
switch back to native mode. This function only applies td $ystem PTLsim/X.

e The global cycle counter and other counters are incremented

TheoutOfOrderCore::runcycle() function is where the majority of the work in PTLsim’s out of
order model occurs. This function, in ooocore.cpp, runsayeée in the core by calling functions to
implement each pipeline stage, the per-core data cachestlagidclockable structure. If the core’s
commit stage just encountered a special event (e.g. hamierocode assist request, exception,
interrupt, etc.), the appropriate action is taken at théeclgoundary.

In the following chapters, we describe every pipeline staug structure in detail.

Every structure in the out of order model can obtain a refedo its parenbutOfOrderCore
structure by calling its owgetcore() method. Similarlygetcore().ctx returns a reference to
theContext structure for that core.

16.1 Event Log Ring Buffer

Section10.5describes PTLsim’s event log ring buffer system, in whiak $hmulator can log all
per-cycle events to a circular ring buffer when thegbuf option is given. The ring buffer can
help developers look backwards in time from when an undeigiravent occurs (for instance, as
specified byringbuf-trigger-rip), allowing much easier debugging and experimentation.

In the out of order core, theventLog structure provides this ring buffer. The buffer consistaiof
array ofoutOfOrderCoreEvent structures (irooocore.h); each structure contains a fixed header
with subject information common to all events (e.g. the eyciuid, RIP, uop, ROB slot, and so
forth), plus a union with sub-structures for each possisénetype. The actual events are listed in
an enum above this structure.

TheEventLog class has various functions for quickly adding certain sypeevents and filling in
their special fields. Specifically, calling one of tBeentLog::add() functions allocates a new
record in the ring buffer and returns a pointer to it, allogvimdditional event-specific fields to
be filled in if needed. The usage of these functions is vewigtitforward and documented by
example in the various out of order core source files.

In ooocore.cpp , the OutOfOrderCoreEvent::print() method lists all event types and gives
code to nicely format the recorded event data. d\e@tlog.print() function prints every event
in the ring buffer; this function can be called from anywhareevent backtrace is needed.

87

Chapter 17

Fetch Stage

17.1 Instruction Fetching and the Basic Block Cache

As described in SectioB.1, x86 instructions are decoded into transops prior to acxatution
by the out of order core. Some processors do this translago6 instructions are fetched from
an L1 instruction cache, while others use a trace cache tte pte-decoded uops. PTLsim takes a
middle ground to allow maximum simulation flexibility. Spkcally, the Fetch stage accesses the
L1 instruction cache and stalls on cache misses as if it wetohihg several variable length x86
instructions per cycle. However, actually decoding x8@ringions into uops over and over again
during simulation would be extraordinarily slow.

Therefore, fosimulation purposes onlyhe out of order model uses the PTLddasic block cache
The basic block cache, described in Chagtestores pre-decoded uops for each basic block, and
is indexed using theipvirtPhys structure, consisting of the RIP virtual address, sevenalext-
dependent flags and the physical page(s) spanned by thebdbaskdin PTLsim/X only).

During the fetch process (implemented in theofOrderCore::fetch() function inooopipe.cpp),
PTLsim looks up the current RIP to fetch fromet¢hrip), uses the current context to construct
a full rRIPVirtPhys key, then uses this key to query the basic block cache. If disectblock has
never been decoded befobbcache.translate() is used to do this now. This is all done by the
fetch_or_translate_basic_block() function.

Technically speaking, the cached basic blocks contaimsops rather than uops: as explained in
Section5.1, each transop gets transformed into a true uop after it smned in the rename stage.
In the following discussion, the term uop is used intercleaddy with transop.

17.2 Fetch Queue

Each transop fetched into the pipeline is immediately amgiga monotonically increasinguid
(universally unique identifier) to uniquely track it for dedging and statistical purposes. The fetch
unit attaches additional information to each transop (&scthe uop’s uuid and tr&PVirtPhys

88

of the corresponding x86 instruction) to fornFatchBufferEntry structure. This fetch buffer

is then placed into the fetch queuet¢hg) assuming it isn’t full (if it is, the fetch stage stalls).
As the fetch unit encounters transops with their EOM (end a€ro-op) bit set, the fetch RIP is
advanced to the next x86 instruction according to the ity length stored in the SOM transop.

Branch uops trigger the branch prediction mechanism (@e@#) used to select the next fetch
RIP. Based on various information encoded in the branctstqaand the next RIBfter the x86
instruction containing the branch, theanchpred.predict() function is used to redirect fetch-
ing. If the branch is predicted not taken, the sense of thedbra condition code is inverted and the
transop’sriptaken andripseq fields are swapped; this ensures all branches are considered
rect only if taken. Indirect branches (jumps) have thgisken field overwritten by the predicted
target address.

PTLsim models the instruction cache by using thehes.probe_icache() function to probe

the cache with the physical address of the curfetth window Most modern x86 processors
fetch aligned 16-byte or 32-byte blocks of bytes into theodies and try to pick out 3 or 4 x86
instructions per cycle. Since PTLsim uses the basic blockeait does not actually decode
anything at this point, but it still attempts to pick out up4oops (or whatever limit is specified in
ooocore.h) within the current 16-byte window around the fetch RIP;tshing to a new window

must occur in the next cycle. The instruction cache is onbppd when switching fetch windows.

If the instruction cache indicates a miss, or the ITLB misdhe waiting_for_icache_fill

variable is set, and the fetch unit remains stalled in suleseigcycles until the cache subsystem
calls theOutOfOrderCoreCacheCallbacks::icache_wakeup() callback registered by the core.
The core’s interactions with the cache subsystem will berilgsd in great detail later on.

89

Chapter 18

Frontend and Key Structures

18.1 Resource Allocation

During the Allocate stage, PTLsim dequeues uops from thehfgtieue, ensures all resources
needed by those uops are free, and assigns resources toggaels needed. These resources
include Reorder Buffer (ROB) slots, physical registers lad store queue (LSQ) entries. In the
event that the fetch queue is empty or any of the ROB, physataster file, load queue or store
gueue is full, the allocation stage stalls until some resesibecome available.

18.2 Reorder Buffer Entries

The Reorder Buffer (ROB) in the PTLsim out of order model veoeikactly like a traditional ROB:
as aqueue, entries are allocated from the tail and comnfiitetthe head. EacReorderBufferEntry
structure is the central tracking structure for uops in tipeline. This structure contains a variety
of fields including:

e The decoded uopupp field). This is the fully decodedransOp augmented with fetch-
related information like the uop’s UUID, RIP and branch pecéat information as described
in the Fetch stage (Sectidrr.)).

e Current state of the ROB entry and u@oirfent_state_list ; see below)

e Pointers to the physical registgifsreg), LSQ entry (sq) and other resources allocated
to the uop

e Pointers to the three physical register operands to theasowell as a possible store depen-
dency used in replay scheduling (described later)

e Various cycle counters and related fields for simulatingypees through the pipeline

90

18.2.1 ROB States

Each ROB entry and corresponding uop can be in one of a numbtates describing its progress
through the simulator state machine. ROBs are linked imicelil lists according to their current
state; these lists are named_ statenameist . Thecurrent_state_list field specifies the list
the ROB is currently on. ROBs can be moved between stateg th&®ROB::changestate(st at el i st)
method. The specific states will be described below as theegrezountered.

NOTE: the terms “ROB entry” (singular) and “uop” are used intergeably from now on unless
otherwise stated, since there is a 1:1 mapping between the tw

18.3 Physical Registers

18.3.1 Physical Registers

Physical registers are represented in PTLsim byPtiesicalRegister structure. Physical reg-
isters store several components:

¢ Index of the physical registeidk) and the physical register file idfid) to which it be-
longs

e The actual 64-bit register data

e x86 flags: Z, P, S, O, C. These are discussed below in Sestbn

e Waiting flag FLAG_WAIT) for results not yet ready

¢ Invalid flag FLAG_INVAL) for ready results which encountered an exception. Thegtixe
code is written to the data field in lieu of the real result

e Current state of the physical registstafe)

e ROB currently owning this physical register, or architeatuegister mapping this physical
register

e Reference counter for the physical register. This is reglior reasons described in Section
24.5

18.3.2 Physical Register File

PTLsim uses a flexible physical register file model in whichtiple physical register files with dif-

ferent sizes and properties can optionally be defined. Hags$igal register file in theutOfOrderCore::physre
array can be made accessible from one or more clusters. $tanie, uops which execute on float-

ing point clusters can be forced to always allocate a ragistthe floating point register file, or

each cluster can have a dedicated register file.

91

Various heuristics can also be used for selecting the exdige into which a result is placed. The
default heuristic simply finds the first acceptable physieglster file with a free register. Accept-
able physical register files are those register files in wkhehuop being allocated is allowed to
write its result; this is configurable based on clusteringescribed below. Other allocation poli-
cies, such as alternation between available register fildsiapendency based register allocation,
are all possible by modifying thename() function where physical registers are allocated..

In each physical register file, physical register number deifsned as thaull register: it always
contains the value zero and is used as an operand anywhezerthealue (or no value at all) is
required.

Physical register files are configureddnohwdef.n . The PhysicalRegisterFile[] array

is defined to declare each register file by name, register Bil¢RFID, from O to the number
of register files) and size. THR@AX_PHYS_REG_FILE_SIZEparameter must be greater than the
largest physical register in the processor.

18.3.3 Physical Register States

Each physical register can be in one of several states atie@y gme. For each physical register

file, PTLsim maintains linked lists (thehysicalRegisterFile.states| statenamg lists) to
track which registers are in each state. Steee field in each physical register specifies its state,
and implies that the physical register is on thegistsregfiles[physreg. r f i d].states[physreg.

The valid states are:

o free: the register is not allocated to any uop.
e waiting: the register has been allocated to a uop but that uop is \gddirssue.

e bypass: the uop associated with the register has issued and produadde (or encountered
an exception), but that value is only on the bypass netwdrkas not actually been written
back yet. For simulation purposes only, uops immediatelievineir results into the physical
register as soon as they issue, even though technicallyetht iis still only on the bypass
network. This helps simplify the simulator considerablyheut compromising accuracy.

e Written: the uop associated with the register has passed througtritieback stage and the
value of the physical register is now up to date; all futunesztoners will read the uop’s result
from this physical register.

e arch: the physical register is currently mapped to one of the &chiral registers; it has no
associated uop currently in the pipeline

e pendingfree: this is a special state described in Sectdns
One physical register is allocated to each uop and movedhetgaiting state, regardless of which

type of uop it is. For integer, floating point and load uopg pinysical register holds the actual
numerical value generated by the corresponding uop. Braopls place the target RIP of the

92

state

branch in a physical register. Store uops place the mergedalatore in the register. Technically
branches and stores do not need physical registers, buefotke processor design simple, they
are allocated registers anyway.

18.4 Load Store Queue Entries

Load Store Queue (LSQ) Entries (theadStoreQueueEntry structure in PTLsim) are used to
track additional information about loads and stores in tpelme that cannot be represented by a
physical register. Specifically, LSQ entries track:

e Physical addresf the corresponding load or store
e Datafield (64 bits) stores the loaded value (for loads) or theerédustore (for stores)

e Address valid bit flag indicates if the load or store knows its effective piogl address yet.
If set, the physical address field is valid.

e Data valid bit flag indicates if the data field is valid. For loads, thisét when the data has
arrived from the cache. For stores, this is set when the dattote becomes ready and is
merged.

e Invalid bit flag is set if an exception occurs in the corresponding lmastore.

The LoadStoreQueueEntry structure is technically a superset of a structure knowmaSRER
(Store Forwarding Register), which completely represamtg load or store and can be passed
between PTLsim subsystems easily. One LSQ entry is allddateach load or store during the
Allocate stage.

In real processors, the load queue (LDQ) and store queue)(&EPhysically separate for circuit
complexity reasons. However, in PTLsim a unified LSQ is usedake searching operations
easier. One additional bit flagtbre bit) specifies whether an LSQ entry is a load or store.

18.4.1 Register Renaming

The basic register renaming process in the PTLsim x86 madadry similar to classical register
renaming, with the exception of the flags complications dbed in Sectiorb.4 Two versions
of the register rename table (RRT) are maintainedpaculative RRTwvhich is updated as uops
are renamed, andammit RRTwhich is only updated when uops successfully commit. Sihee
simulator implements a unified physical and architectwggister file, the commit process does not
actually involve any data movement between physical aruitactural registers: only the commit
RRT needs to be updated. The commit RRT is used only for exeephd branch mispredict
recovery, since it holds the last known good mapping of &echiral to physical registers.

Each rename table contains 80 entries as shown in Taéble This table maps architectural regis-
ters and pseudo-registers to the most up to date physidateegfor the following:

93

Table 18.1: Architectural registers and pseudo-registees! for renaming.
| Architectural Registers and Pseudo-Registers |

0 rax rcx rdx rbx rsp rbp rsi rdi
8 r8 r9 ri0 ril ri2 rli3 rl4 rl5
16 | xmmlO xmmhO | xmmll xmmh1l xmmi2 xmmh2 | xmmI3 xmmh3
24 | xmml4 xmmh4 | xmml5 xmmhb5 xmml6 xmmh6 | xmml7 xmmh?7

32 | xmml8 xmmh8 | xmml9 xmmh9 xmml|10 xmmh10 | xmml1l | xmmh11
40 | xmml12 | xmmh12 | xmml13 | xmmh13 | xmml14 xmmhl4 | xmmll5 | xmmhl5
48 | fptos fpsw fptags fpstack trd tr5 tré ctx

56 | rip flags iflags selfrip nextrip arl ar2 zero

64 | tempO templ temp2 temp3 temp4 temp5 temp6 temp7
72 | zf cf of imm mem temp8 temp9 templ0

e 16 x86-64 integer registers
e 16 128-bit SSE registers (represented as separate 64zbiahd low halves)

e ZAPS, CF, OF flag sets described in Secttod These rename table entries point to the
physical register (with attached flags) of the most receptingrogram order to update any
or all of the ZAPS, CF, OF flag sets, respectively.

e Various integer and x87 status registers

e Temporary pseudo-registaesnp0 -temp7 not visible to x86 code but required to hold tem-
poraries (e.g. generated addresses or value to swajhgninstructions).

e Special fixed values, e.gero ,imm (value is in immediate fieldmen(destination of stores)

Once the uop’s three architectural register sources ar@@dtp physical registers, these physical
registers are placed in theperands[0,1, fields. The fourth operand fieldyperands[3],

is used to hold a store buffer dependency for loads and sttmisswill be discussed later. The
speculative RRT entries for both the destination physiegister and any modified flags are then
overwritten. Finally, the ROB is moved into tiieontend state.

18.4.2 External State

Since the rest of the simulator outside of the out of ordee clwes not know about the RRTs and
expects architectural registers to be in a standardizeddrthe per-cor€ontext structure is
used to house the architectural register file. These aothitd registers, includingeG_flags and
REG_rip , are directly updated in program order by the out of ordee esrinstructions commit.

94

18.5 Frontend Stages

To simulate various processor frontend pipeline depth®8&&e placed in thiontendstate for a
user-selectable number of cycles. Intlatend() function, thecycles_left field in each ROB
is decremented until it becomes zero. At this point, the womoved to theeady to dispatch
state. This feature can be used to simulate various branspredict penalties by setting the
FRONTEND_STAGESNStant.

95

Chapter 19

Scheduling, Dispatch and Issue

19.1 Clustering and Issue Queue Configuration

The PTLsim out of order model can simulate an arbitrarily ptawr set of functional units grouped
into clusters Clusters are specified by tiatuster structure and are defined by thesters[]

array inooocore.h . EachCluster element defines the name of the cluster, which functionasuni
belong to the clusterfi_mask field) and the maximum number of uops that can be issued in that
cluster each cyclagsue_width ~ field)

The intercluster_latency_map matrix defines the forwarding latency, in cycles, between a
given cluster and every other cluster. irfercluster_latency_map| Al B] is L cycles, this
means that functional units in clustBrmust waitL cycles after a uopJ in cluster A completes
before cluster B’s functional units can issue a uop depenalebl’s result. If the latency is zero
between clusteré and B, producer and consumer uopsAnand B can always be issued back
to back in subsequent cycles. Hence, the diagonal of theafoing latency matrix is always all
zeros.

This clustering mechanism can be used to implement seveaflres of modern microprocessors.
First, traditional clustering is possible, in which it takeultiple additional cycles to forward
results between different clusters (for instance, one arenmteger clusters and a floating point
unit). Second, several issue queues and corresponding vgsith limits can be defined within

a given virtual cluster, for instance to sort loads, stomres$ ALU operations into separate issue
gueues with different policies. This is done by specifyimgirter-cluster latency of zero cycles
between the relevant pseudo-clusters with separate ismieg. Both of these uses are required
to accurately model most modern processors.

There is also an equivaleintercluster_bandwidth_map matrix to specify the maximum num-
ber of values that can be routed between any two clustersoyatd

The IssueQueue template class is used to declare issue queues; each dhastéts own issue
gueue. The syntassueQueue< Size> issueq_ name is used to declare an issue queue with a
specific size. In the current implementation, the size carfrdi@ 1 to 64 slots. The macros
foreach_issueq() ,sched_get_all_issueq_free_slots() andissueq_operation_on_cluster_with_resul

96

macros must be modified if the cluster and issue queue coafigaris changed to reflect all avail-
able clusters; the modifications required should be obilmms the example code. These macros
with switch statements are required instead of a simpleyatace the issue queues can be of
different template types and sizes.

19.2 Cluster Selection

The ReorderBufferEntry::select_cluster() function is responsible for routing a given uop
into a specific cluster at the time it is dispatched; uops deswitch between clusters after this.

Various heuristics are employed to select which clustevarguop should be routed to. In the ref-
erence implementation providedadnopipe.cpp , @ weighted score is generated for each possible
cluster by scanning through the uop’s operands to deterwimeh cluster they will be forwarded
from. If a given operand’s corresponding producer &ap currently either dispatched to cluster
C but waiting to execute or is still on the bypass network ost#uC, then clusteiC’s score is
incremented.

The final cluster is selected as the cluster with the highastesout of the set of clusters which
the uop can actually issue on (e.g. a floating point uop caissoe on a cluster with only integer
units). ThereorderBufferEntry::executable_on_cluster_mask bitmap can be used to further
restrict which clusters a uop can be dispatched to, for mgtdoecause certain clusters can only
write to certain physical register files. This mechanismesigned to route each uop to the cluster
in which the majority of its operands will become availabi¢éhe earliest time; in practice it works
quite well and variants of this technique are often usedahpeocessors.

19.3 Issue Queue Structure and Operation

PTLsim implements issue queues in tk&ieQueue template class using the collapsing priority
gueue design used in most modern processors.

As each uop is dispatched, it is placed at the end of the isseieedfor its cluster and several asso-
ciative arrays are updated to reflect which operands thesusflliwaiting for. In the IssueQueue
class, thensert() =~ method takes the ROB index of the uop (&g in issue queue terminology),
the tags (ROB indices) of its operands, and a map of whicheobgierands are ready versus wait-
ing. The ROB index is inserted into an associative array,tardROB index tags of any waiting
operands are inserted into corresponding slots in paeatiays, one array per operand (in the cur-
rent implementation, up to 4 operands are tracked). If amamgkewas ready at dispatch time, the
slot for that operand in the corresponding array is markedwadid since there is no need to wake
it up later. Notice that the new slot is always at the end ofifisele queue array; this is made
possible by the collapsing mechanism described below.

The issue queue maintains two bitmaps to track the stateobf gat in the queue. Thealid
bitmap indicates which slots are occupied by uops, whiledhged bitmap indicates which of
those uops have been issued. Together, these two bitmapsterstate machine described in
Table19.1

97

Table 19.1: Issue Queue State Machine
| Valid | Issued| Meaning

0 0 Unused slot

0 1 (invalid)

1 0 Dispatched but waiting for operands

1 1 Issued to a functional unit but not yet completed

Afterinsert() is called, the slot is placed in the dispatched state. As eaplftompletes, its tag
(ROB index) is broadcast using thevadcast) method to one or more issue queues accessible
in that cycle. Because of clustering, some issue queuesesiive the broadcast later than others;
this is discussed below. Each slot in each of the four opeearals is compared against the
broadcast value. If the operand tag in that slot is valid aatches the broadcast tag, the slot (in
one of the operand arrays only, not the entire issue quelimjabdated to indicate it is ready and
no longer waiting for further broadcasts.

Every cycle, theclock() method uses thealid andissued bitmaps together with the valid
bitmaps of each of the operand arrays to compute which isseeegslots in the dispatched state
are no longer waiting on any of their operands. This bitmageatly slots is then latched into the
allready bitmap.

Theissue() method simply finds the index of the first set bit in tiieeady ~ bitmap (this is the
slot of the oldest ready uop in program order), marks theespwnding slot as issued, and returns
the slot. The processor then selects a functional unit ®uthp in that slot and executes it via the
ReorderBufferEntry::issue() method. After the uop has completed execution (i.e. it canno
possibly be replayed), thelease() method is called to remove the slot from the issue queue,
freeing it up for incoming uops in the dispatch stage. Théapsing design of the issue queue
means that the slot is not simply marked as invalid - all sidisr it are physically shifted left by
one, leaving a free slot at the end of the array. This desigealaively simple to implement in
hardware and makes determining the oldest ready to issueargjrivial.

Because of the collapsing mechanism, it is critical to nbé the slot index returned bssue()
will become invalid after the next call to themove() method; hence, it should never be stored
anywhere if a slot could be removed from the issue queue im#ésntime.

If a uop issues but determines that it cannot actually cotajglethat time, it must beeplayed The
replay() method clears the issued bit for the uop’s issue queue stoting it to the dispatched
state. The replay mechanism can optionally add additiogpéddencies such that the uop is only
re-issued after those dependencies are resolved. Thipatamt for loads and stores, which may
need to add a dependency on a prior store queue entry aftergiaanatching address in the load
or store queues. In rare cases, a replay may also be requiedawop is issued but no applicable
functional units are left for it to execute on. TReorderBufferEntry::replay() method is a
wrapper aroundssueQueue::replay() used to collect the operands the uop is still waiting for.

98

19.3.1 Implementation

PTLsim uses a novel method of modeling the issue queue amd afisociative structures with
small tags. Specifically, thrullyAssociativeArray Tags8bit template class declarediagic.h

and used to build the issue queue makes use of the host prosels28-bit vector (SSE) instruc-

tions to do massively parallel associative matching, mmskind bit scanning on up to 16 tags
every clock cycle. This makes it substantially faster thamugators using the naive approach of
scanning the issue queue entries linearly. Similar class&gyic.h support O(1) associative

searches of both 8-bit and 16-bit tags; tags longer thanatt@sgenerally more efficient if the

genericFullyAssociativeArrayTags using standard integer comparisons is used instead.

As a result of this high performance design, each issue gadingited to 64 entries and the tags to
be matched must be between 0 and 255 to fit in 8 bits. FlliAssociativeArray Tags16bit

class can be used instead if longer tags are required, abshefreduced simulation performance.
To enable thisBIG_ROBmust be defined inoohwdef.h

19.3.2 Other Designs

It's important to remember that the issue queue design ithestabove i®nepossible implemen-
tion out of the many designs currently used in industry arsg¢aech processors. For instance,
in lieu of the collapsing design (used by the Pentium 4 anddP&is/970), the AMD K8 uses
a sequence number tag of the ROB and comparator logic tot sekeearliest ready instruction.
Similarly, the Pentium 4 uses a set of bit vectordé@endency matxnstead of tag broadcasts to
wake up instructions. These other approaches may be imptechby modifying thessueQueue
class as appropriate.

19.4 Issue

Theissue() top-level function issues one or more instructions in edcister from each is-
sue queue every cycle. This function consults diaeters[clusterid.issue_width field de-
fined inooocore.h to determine the maximum number of uops to issue from eadtezluThe
issueq_operation_on_cluster_with_result(cluster, igs lot, issue()) macro (Section
19.1) is used to invoke th&assue() method of the appropriate cluster to select the earlieslyrea
issue queue slot, as described in Secfiér8

TheReorderBufferEntry::issue() method of the corresponding ROB entry is then called to ac-
tually execute the uop. This method first makes sure a fumakianit is available within the cluster
that’s capable of executing the uop; if not, the uop is repdegnd re-issued again on the next cycle.
At this point, the uop’s three operands (rb , rc) are read from the physical register file. If any of
the operands are invalid, the entire uop is marked as invatildan EXCEPTION_Propagate re-

sult and is not further executed. Otherwise, the uop is dreldoy calling the synthesized execute
function for the uop (see Sectid7.]).

Loads and stores are handled specially by callingigheload() Or issuestore() method.
Since loads and stores can encounter an mis-speculatgpnvwben a load is erroneously issued

99

before an earlier store to the same addressesigsiioad() andissuestore() functions can
returniISSUE_MISSPECULATEDO force all uops in program order after the mis-speculatgrta be
annulled and sent through the pipeline again. Similarlgsifeload() oOr issuestore() return
ISSUE_NEEDS_REPLAYissuing from that cluster is aborted since the uop has beglayed in
accordance with Sectid®.3 Itis important to note that loads which miss the cache ansidered

to complete successfully and adot require a replay; their physical register is simply marked a
waiting until the load arrives. In both the mis-speculatao replay cases, no further uops from
the cluster’s issue queue are dispatched until the nex¢cycl

Branches are handled similar to integer and floating poiatamons, except that they may cause a
mis-speculation in the event of a branch mispredictiors, ihdiscussed below.

If the uop caused an exception, we force it directly to the mitrstage and not through writeback;
this keeps dependencies waiting until they can be propertyléed by the speculation recovery
logic. The commit stage will detect the exception and taker@priate action. If the exceptional
uop was speculatively executed beyond a branch, it will nesach commit anyway since the
bogus branch would have to commit before the exception wevdth become visible.

NOTE: In PTLsim, all issued uops put their result in the uop’s asstgphysical register at the
time of issue, even though the data technically does notaapgere until writeback (i.e. the
physical register enters theitten state). This is done to simplify the simulator implemeraatit

is assumed that any data “read” from physical registersrbefoiteback is in fact being read from
the bypass network instead.

100

Chapter 20

Speculation and Recovery

20.1 Misspeculation Cases

PTLsim supports three speculative execution recovery ar@shns to handle various types of spec-
ulation failures:

e Replay is for scheduling and dependency mis-predictions only. [®e&g uops remain in
the issue queue so replay is very fast but limited in scoppldyes described extensively in
Sectionl9.

e Redispatchfinds the slice of uops in the ROB dependent on a mis-speculaje and sends
only those dependent uops back to teady-to-dispatctstate. It is used for load-store
aliasing recovery, value mispredictions and other casesavtine fetched uops themselves
are still valid, but their outputs are invalid.

e Annulment removes any uops in program order after (or optionally idicig) a given uop.
It is used for branch mispredictions and misalignment recpv

20.2 Redispatch

20.2.1 Redispatch Process

Many types of mis-speculations do not require refetchingfarént set of uops; instead, any uops
dependent on a mis-speculated uop can simply be recirdullateugh the pipeline so they can
re-execute and produce correct values. This process isrkasmedispatchin the baseline out of
order core, it is used to recover from load-store aliasireg(i®n22.2.]).

When a mis-speculated ROB is detectedB.redispatch_dependents() is called. This function
identifies the slice of uops that consumed values (direatiypdirectly) from the mis-speculated
uop, using dependency bitmaps similar to those used in reeépsorsROB.redispatch_dependents(bool

101

inclusive) has arinclusiveparameter: if false, only the dependent uops are redispdjciot in-
cluding the mis-speculated uop. This is most useful for @grediction, where the correct value
can be directly reinjected into the mis-speculated uopisal register without re-executing it.

In ROB.redispatch() , each affected uop is placed back into tbie ready_to_dispatch state,
Iways in program order. This helps to avoid deadlocks, sineeedispatched slice is given priority
for insertion back into the issue queue. The resources iassdavith each uop (physical register,
LDQ/STQ slot, IQ slot, etc.) are also restored to the stagg Were in immediately after renaming,
so they can be properly recirculated through the pipelinétag uop never issued. Various other
issues must also be handled, such as making sure knowntsttoad aliasing constraints are
preserved across the redispatch so as to avoid infiniteyrégd@s, and branch directions must be
corrected if a mispredict caused a fetch unit redirectionthat mispredict was in fact based on
mis-speculated data.

20.2.2 Deadlock Recovery

Redispatch can create deadlocks in cases where othertedrelaps occupy all the issue queue
slots needed by the redispatched uops to make forward m®igred there is a circular dependency
loop (e.g. on loads and stores not known at the time of thepedich) that creates a chicken-and-
egg problem, thus blocking forward progress.

To recover from this situation, we detect the case where s l@ve been dispatched for 64
cycles, yet theeady_to_dispatch queue still has valid uops. This situation very rarely haygpe
in practice unless there is a true deadlock. To break up theldek, ideally we should only need
to redispatch all uops occupying issue queue slots or tHoessdy waiting for dispatch - all others
have produced a result and cannot block the issue queues adaivever, this does not always
work in pathological cases, and can sometime lead to reppeatedlocks. Since deadlocks are very
infrequent, they can be resolved by just flushing the enipelme. This has a negligible impact
on performance.

20.2.3 Statistical Counters

Several statistical counters are maintained in the PTL&tisics tree to measure redispatch over-
head, in theoocore.dispatch.redispatch node:

e deadlock-flushes measures how many times the pipeline must be flushed to eesolv
deadlock.

e trigger-uops measures how many uops triggered redispatching becausmisspecula-
tion. This number does not count towards the statisticamelo

e dependent-uops IS a histogram of how many uops depended on each trigger wbpn-n
cluding the trigger uop itself.

102

20.3 Annulment

20.3.1 Branch Mispredictions

Branch mispredictions form the bulk of all mis-speculatpemtions. Whenever the actual RIP
returned by a branch uop differs from thgtaken field of the uop, the branch has been mis-
predicted. This means all uops after (ot including) the branch must be annulled and removed
from all processor structures. The fetch queue (Sedfiof) is then reset and fetching is redirected
to the correct branch target. However, all uops in prograsebefore the branch are still correct
and may continue executing.

Note that we damotjust reissue the branch: this would be pointless, as wedlre@ow the correct
RIP since the branch uop itself has already executed onsedd, we let it writeback and commit
as if it were predicted correctly.

20.3.2 Annulment Process

In PTLsim, therReorderBufferEntry::annul() method removes any and all ROBs that entered
the pipeline after and optionally including the misspetadaiop (depending on tlkeep_misspec_uop
argument). Because this method moves all affected ROB&tlveh state, they are instantly taken
out of consideration for future pipeline stages and will bepged on the next cycle.

We must be extremely careful to annul all uops in an x86 magretherwise half the x86 instruc-
tion could be executed twice once refetched. Thereforiegifitst uop to annul is not also the first
uop in the x86 macro-op, we may have to scan backwards in tiWR@I we find the first uop of
the macro-op. In this way, we ensure that we can annul theeemticro-op. All uops comprising
the macro-op are guaranteed to still be in the ROB since nbtleeauops can commit until the
entire macro-op can commit. Note that this does not appligaffinal uop in the macro-op is a
branch and that branch uop itself is being retained as oedgtiismispredicted branches.

The first uop to annul is determined in thenul() method by scanning backwards in time from
the excepting uop until a uop with its SOM (start of macro-oipjs set, as described in Sectibri.
This SOM uop represents the boundary between x86 instnsg;témd is where we start annulment.
The end of the range of uops to annul is at the tail of the redrdter.

We have to reconstruct the speculative RRT as it existedbpfste the first uop to be annulled was
renamed. This is done by calling theeudocommit() method of each annulled uop to implement
the “fast flush with pseudo-commit” algorithm as followsrdtj we overwrite the speculative RRT
with the committed RRT. We thesimulatethe commitment of all non-speculative ROBs up to the
first uop to be annulled by updating the speculative RRT asiére the commit RRT. This brings
the speculative RRT to the same state as if all in flight notiglpive operations before the first
uop to be annulled had actually committed. Fetching is teeomed at the correct RIP, where new
uops are renamed using the recovered speculative RRT.

Other methods of RRT reconstruction (like backwards walthvgaved checkpoint values) are
difficult to impossible because of the requirement that feagame tables be restored even if some
of the required physical registers with attached flags haveesbeen freed. Technically RRT

103

checkpointing could be used but due to the load/store repkshanism in use, this would require
a checkpoint at every load and store as well as branches.elHgrecforward walk method seems
to offer the best performance in practice and is quite simplee Pentium 4 is believed to use a
similar method of recovering from some types of mis-spdauia.

After reconstructing the RRT, for each ROB to annul, we boaatlthe ROB index to the appro-
priate cluster’s issue queue, allowing the issue queuergephe slot of the ROB being annulled.
Finally, for each annulled uop, we free any resources aiatt it (i.e., the ROB itself, the des-
tination physical register, the load/store queue entrgrfif) and so on. Any updates to the branch
predictor and return address stack made during the speeutatecution of branches are also rolled
back.

Finally, the fetch unit is restarted at the correct RIP anpsuenter the pipeline and are renamed
according to the recovered rename tables and allocatedroesmaps.

104

Chapter 21

Load Issue

21.1 Address Generation

Loads and stores both have their physical addresses codnymite) thereorderBufferEntry::addrgen()
method, by adding the andrb operands. If the load or store is one of the special unali§jrad
forms (d.lo ,ld.hi ,stlo ,sthi)described in Sectioh.6, the address is re-aligned according
to the type of instruction.

At this point, thecheck_and_translate() method is used to translate the virtual address into a
mapped physical address using the page tables and TLB. Tibédn of this method varies sig-
nificantly between userspace-only PTLsim and full systerhdi/X. In userspace-only PTLsim,

the shadow page access tables (Sedtibf) are used to do access checks; the same virtual address
is then returned to use as a physical address. In full sysHmsif/X, the real x86 page tables
are used to produce the physical address, significantly meodved checks are done, and finally

a pointer into PTLsim’s mapping of all physical pages is me¢a (see Sectiob4.3.]).

If the virtual address is invalid or not present for the spediaccess typeheck_and_translate()
will return a null pointer. At this pointhandle_common_load_store_exceptions() is called to
take action as follows.

If a given load or store accesses an unaligned address mitos@ of the speciad.lo /ld.hi /stlo /st.hi
uops described in Sectidn6, the processor responds by first setting thealigned ” bit in the
original TransOp in the basic block cache, then it annuls all uops after anididiveg the problem
load, and finally restarts the fetch unit at the RIP addreskeofoad or store itself. When the load

or store uop is refetched, it is transformed into a paited /id.hi orstlo /sthi uopsin ac-
cordance with SectioB.6. This refetch approach is required rather than a simpleyegberation
since a replay would require allocating two entries in tiseigsqueue and potentially two ROBs,
which is not possible with the PTLsim design once uops haea benamed.

If a load or store would cause a page fault for any reasom;Héw_and_translate() function
will fill in the exception andpfec (Page Fault Error Code) variables. These two variabledare t
placed into the low and high 32 bits, respectively, of theb@4esult in the destination physical
register or store buffer, in place of the actual data. Thd wastore is then aborted and execution

105

returns to theReorderBufferEntry::issue() method, causing the result to be marked with an
exception EXCEPTION_PageFaultOnRead Or EXCEPTION_PageFaultOnWrite).

One x86-specific complication arises at this point. If a I¢@dstore) uop is the high parti(i
orsthi) of an unaligned load or store pair, but the actual user addi not overlap any of the
high 64 bits accessed by thenhi orst.hi uop, the load or store should be completely ignored,
even if the high part overlapped onto an invalid page. Thizesause it is perfectly legal to do an
unaligned load or store at the very end of a page such thaetttésd bit chunk is not mapped to a
valid page; the x86 architecture mandates that the loadog skecute correctly as far as the user
program is concerned.

21.2 Store Queue Check and Store Dependencies

After doing these exception checks, the load/store que®®jLis scanned backwards in time
from the current load’s entry to the LSQ’s head. If a given L&y corresponds to a store, the
store’s address has been resolved and the memory rangeadri®etltes load overlaps the memory
range touched by the store, the load effectively has a dgmeydn the earlier store that must be
resolved before the load can issue. The meaning of “overigppemory range” is defined more

specifically in Sectior22.1

In some cases, the addresses of one or more prior storesltzat mmay depend on may not have
been resolved by the time the load issues. Some procesdbstaNithe load uop untibll prior
store addresses are known, but this can decrease perfarhgmiecorrectly preventing indepen-
dent loads from starting as soon as their address is availBbt this reason, the PTLsim processor
model aggressively issues loads as soon as possible umeleatl is predicted to frequently alias
another store currently in the pipeline. This load/stoi@sathg prediction technique is described in
Section22.2.1

In either of the cases above, in which an overlapping stoigeistified by address but that store’s
data is not yet available for forwarding to the load, or whegrior store’s address has not been
resolved but igpredictedto overlap the load, the load effectively has a data flow ddeeay

on the earlier store. This dependency is represented bygeltte load’s fourthrs operand
(operands[RS] in theReorderBufferEntry) to the store the load is waiting on. After adding
this dependency, theeplay() = method is used to force the load back to the dispatched state,
where it waits until the prior store is resolved. After thadois re-issued for a second time, the
store queue is scanned again to make sure no intervenirggsanved in the meantime. If a
different match is found this time, the load is replayed adthime. In practice, loads are rarely
replayed more than once.

21.3 Data Extraction

Once the prior store a load depends on (if any) is ready anti@kxception checks above have
passed, it is time to actually obtain the load’s data. Thaxess can be complicated since some
bytes in the region accessed by the load could come from tlascdahe while other bytes may be

106

forwarded from a prior store. If one or more bytes need to liained from the data cache, the L1
cache is probed (via theaches.probe_cache_and_sfr() function) to see if the required line is
present. If so, and the combination of the forwarded stdr@nf) and the L1 line fills in all bytes
required by the load, the final data can be extracted.

To extract the data, the load unit creates a 64-bit tempdmafifer by overlaying the bytes touched
by the prior store (if any) on top of the bytes obtained from¢hche (i.e., the bytes at the mapped
address returned by theadrgen() function). The correct word is then extracted and sign ede€ein
(if required) from this buffer to form the result of the loddnaligned loads (described in Section
5.6) are somewhat more complex in that both the low and high 6dhaitks from thed.lo and
ld.hi uops, respectively, are placed into a 128-bit buffer froniciithe final result is extracted.

For simulation purposes only, the data to load is immediatetessed and recordeditsueload()
regardless of whether or not there is a cache miss. This ntakdsaded data significantly easier
to track. In a real processor, the data extraction procegsadly only happens after the missing
line actually arrives, however our implementation in no aé#fgcts performance.

21.4 Cache Miss Handling

If no combination of the prior store’s forwarded bytes anthdaesent in the L1 cache can fulfill
a load, this is miss and lower cache levels must be accesh&picess is described in Sections
25.2and25.3 As far as the core is concerned, the load is completed gidims even if the data has
not yet arrived. The issue queue entry for the load can basetesince the load is now officially in
progress and cannot be replayed. Once the loaded data vasliatine cache subsystem calls the
OutOfOrderCoreCacheCallbacks::dcache_wakeup() function, which marks both the physical
register and LSQ entry of the load as ready, and places tlksI®DB into thecompletedstate.
This allows the processor to wake up dependents of the loddeomext cycle.

107

Chapter 22

Stores

22.1 Store to Store Forwarding and Merging

In the PTLsim out of order model, a given store may merge ita dath that of a previous store
in program order. This ensures that loads which may needriwafd data from a store always
reference exactly one store queue entry, rather than hawingerge data from multiple smaller
prior stores to cover the entire byte range being loadedismbodel, physical memory is divided
up into 8 byte (64 bit) chunks. As each store issues, it s¢anstbre queue backwards in program
order to find the most recent prior store to the same 8 byt@edigphysical address. If there is
a match, the current store depends on the matching priar,stod cannot complete and forward
its data to other consuming loads and stores until the priwe s$n question also completes. This
ensures that the current store’s data can be compositecpasf the older store’s data to form a
single up to date 8-byte chunk. As described in Secli®r, each store queue entry contains a
byte mask to indicate which of the 8 bytes in each chunk anently modified by stores in flight
versus those bytes which must come from the data cache.

Technically there are more efficient approaches, such awiall) stores to issue in any order so
long as they do not overlap on the basis of individual byteswéizer, no modern processor allows
such arbitrary forwarding since the circuit complexityohxed with scanning the store queue for
partial address matches would be prohibitive and slowehldstmost processors only support store
to load forwarding when a single larger prior store covess ¢htire byte range accessed by a
smaller or same sized load; all other combinations stalldbad until the overlapping prior stores
commit to the data cache.

The store inheritance scheme used by PTLsim (describell iBrsin improvement to the more
common “stall on size mismatch” scheme above, but may inanerstore dependency replays
(since stores now depend on other stores when they targsathe 8-byte chunk) compared to a
stall on size mismatch scheme. As a case study, the Pentivocdgsor (Prescott core) implements
a combination of these approaches.

108

22.2 Split Phase Stores

The ReorderBufferEntry::issuestore() function is responsible for issuing all store uops.
Stores are unusual in that they can issue even if theoperand (the value to store) is not ready
at the same time as the andrb operands forming the effective address. This propertyesuls
since it allows a store to establish an entry in the store g@asusoon as the effective address can
be generated, even if the data to store is not ready. By estaiyg addresses in the store queue as
soon as possible, we can avoid performance losses assbwidttehe unnecessary replay of loads
that may depend on a store whose address is unavailabletahththe load issues. In effect, this
means that each store uop may actually issue twice.

In the first phase issue, which occurs as soon asitla@drb operands become ready, the store uop
computes its effective physical address, checks that agddioe all exceptions (such as alignment
problems and page faults) and writes the address into thlespmnding.oadStoreQueueEntry
structure before setting its theidrvalid bit as described in Sectiob8.4 If an exception is
detected at this point, thevalid bit in the store queue entry is set and the destination palysic
register'sFLAG_inv flag is set so any attempt to commit the store will fail.

22.2.1 Load Queue Search (Alias Check)

The load queue is then searched to find any loads after thentigtore in program order which
have already issued but have done so without forwardingfdatathe current store. These loads
erroneously issued before the current store (now known &slap the load’s address) was able
to forward the correct data to the offending load(s). Thisation is known asliasing and

is effectively a mis-speculation requiring us to reissug aaps depending on the store. The
redispatch method (Secti@®.2) is used to re-execute only those uops dependent (eithesstigir
or indirectly) on the store.

Since the redispatch process required to correct aliaswmigtions is expensive and may result
in infinite loops, it is desirable to predict in advance whiohds and stores are likely to alias
each other such that loads predicted to alias are neverdisguen prior stores in the store queue
still have unknown addresses. This works because in mostfauider processors, statistically
speaking, very few loads alias stores compared to normdslram the cache. When an aliasing
mis-speculation occurs, an entry is added to a small fulspaisitive structure (typically< 16
entries) called the Load Store Alias Predictor (LSAP). Htiscture is indexed by a portion of the
address of the load instruction that aliased. This allowddhd unit to avoid issuing any load uop
that matches any address in the LSAP if any prior store adéseare still unresolved; if this is
the case, a dependency is created on the first unresolvedssich that the load is replayed (and
the load and store queues are again scanned) once thatestohees. Similar methods of aliasing
prediction are used by the Pentium 4 (Prescott core onlyPdpioh 21264.

22.2.2 Store Queue Search (Merge Check)

At this point the store queue is searched for prior storefi¢osame 8-byte block as described
above in Sectior22.1; if the store depends on a prior store, the scheduler stextre updated

109

to add an additional dependency @perands[RS]) on this prior store before the store is re-
played in accordance with Sectid®.3to wait for the prior store to complete. If no prior store is
found, or the prior store is ready, the current store is nthdsea second phase store by setting the
load_store_second_phase flag in its ROB entry. Finally, the store is replayed in aceorce
with Section19.3

In the second phase of store uop scheduling, the store uoyisesissued when all four operands
(ra +rb addressic data ands source store queue entry) are valid. The second phase sdpeat
scan of the load and store queues described above to cattdaaisyand stores that may have issued
between the first and second phase issues; the store ised@adlird time if necessary. Otherwise,
therc operand data is merged with the data from the prior storenfij atore queue entry, and
the combined data and bytemask is written into the curremé’ststore queue entry. Finally, the
entry’'sdataready bit is set to make the entry available for forwarding to otlvaiting loads and
stores.

The first and second phases may be combined into a singlevisthaeit replay if both the address
and data operands of the store are all ready at the same tohtbeprior store (if any) the current
store inherits from has already successfully issued.

110

Chapter 23

Forwarding, Wakeup and Writeback

23.1 Forwarding and the Clustered Bypass Network

Immediately after each uop is issued and HeerderBufferEntry::issue() method actually
generates its result, thcles_left field of the ROB is set to the expected latency of the uop
(e.g. between 1 and 5 cycles). The uop is then moved tasteedstate and placed on the
rob_issued_list . Every cycle, thecomplete() method iterates through each ROB in issued
state and decrements égles_left field. If cycles_left becomes zero, the corresponding uop
has completed execution. The ROB is moved todbmpletedstate (onrob_completed_list)
and its physical register or store queue entry is moved tbypess state so newly dispatched
uops do not try to wait for it.

Thetransfer() ~ functionis also called every cycle. This function examitineslist of ROBs in the
completedstate and is responsible for broadcasting the completed$@& (ROB index) to the
issue queues. Because of clustering (Sect@1), some issue queues will receive the broadcast
later than others. Specifically, the ROB&@ward_cycle field determines which issue queues
and remote clusters are visibiteward_cycle cycles after the uop completed. Ttueward()
method, called byransfer() for each uop in theompletedstate, indexes into a lookup table
forward_at_cycle_lut[clustef[forward_cyclg to get a bitmap of which remote clusters are
accessiblgorward_cycle cycles after he uop completed, relative to the originalteluthe uop
issued in. ThdssueQueue::broadcast() method (Sectiorl9.3 is then called for each ap-
plicable cluster to wake up any operands of uops in thatetusaiting on the newly completed
uop.

The MAX_FORWARDING_LATENC®nstant (inooohwdef.h) specifies the maximum number of cy-
cles between any two clusters. After the ROB has progressedgdhMAX_FORWARDING_LATENCY
cycles in thecompletedstate, it is moved to thesady-to-writeback state, effectively meaning
the result has arrived at the physical register file and ggl#é for writeback in the next cycle.

111

23.2 Writeback

Every cycle, thevriteback() ~ function scans the list of ROBs in theady-to-writebaclstate and
selects at mMoStVRITEBACK_WIDTHesults to write to the physical register file. Ttueward()
method is first called one final time to catch the corner casehich a dependent uop was dis-
patched while producer uop was waiting in teady-to-writebaclstate.

As mentioned in Sectiod9.4 for simulation purposes only, each uop puts its resultctliye
into its assigned physical register at the time of issuen ¢lileugh the data technically does not
appear there until writeback. This is done to simplify thendiator implementation; it is as-
sumed that any data “read” from physical registers beforigetnack is in fact being read from
the bypass network instead. Therefore, no actual data maveatcurs in thewriteback()
function; its sole purpose is to place the uop’s physicaisteg into the written state (via the
PhysicalRegister::writeback() method) and to move the ROB into its terminal stagady-
to-commit

112

Chapter 24

Commitment

24.1 Introduction

The commit stage examines uops from the head of the ROB, $lactl all uops comprising a
given x86 instruction are ready to commit, commits the rssof those uops to the architectural
state and finally frees the resources associated with egch uo

24.2 Atomicity of x86 instructions

The x86 architecture specifiasomic executiotior all distinct x86 instructions. This means that
since each x86 instruction may be comprised of multiple uopse of these uops may commit
until all uops in the instruction are ready to commit. In PTLsim, teiaécomplished by checking
if the uop at the head of the ROB (next to commit) has its SOBI{sif macro-op) bit set. If so, the
ROB is scanned forwards from the SOM uop to the next uop inraragorder with its EOM (end
of macro-op) bit set. If all uops in this range are ready to gonand exception-free, the SOM
uop is allowed to commit, effectively unlocking the ROB hegaainter until the next uop with a
SOM bit set is encountered. However, any exception in anyaoopprising the x86 instruction
at the head of the ROB causes the pipeline to be flushed andcapt®n to be taken. Similarly,
external interrupts are only acknowledged at the boundeitwden x86 instructions (i.e. after the
EOM uop of each instruction).

24.3 Commitment

As each uop commits, it may update several components ofthéectural state.

Integer ALU and floating point uops obviously update thestd®tion architectural registend).

In PTLsim, this is done by simply updating the committed ségirename tabled¢mmitrrt) rather
than actually copying register values. However, the oldsptat register mapped to architectural
registerd will normally become inaccessible after the Commit RRT magifor rd is overwritten

113

with the committing uop’s physical register index. The oluygical register previously mapped
to rd can then be freed. Technically physical registers allatédeintermediate uops (such as
those used to hold temporary values) can be immediatelgl fkegout updating any Commit RRT

entries, but for consistency we do not do this.

In PTLsim, a physical register is freed by moving it to #¢YySREG_FREEtate. Unfortunately for
various reasons related to long pipelines and the renanfir@6oflags, register reclamation is not
so simple, but this will be discussed below in Sectdns

Some uops may also commit to a subset of the x86 flags, as sgecifthe uop encoding. For
these uops, in theory no rename tables need updating, Bimflags can be directly masked into the
REG_flags architectural pseudo-register. Should the pipeline bénédsthe rename table entries
for the ZAPS, CF, OF flag sets will all be reset to point to®ms_flags pseudo-register anyway.
However, for the speculation recovery scheme describecdoticd 20.3.2 the REG_zf, REG_cf,
andREG_of commit RRT entries are updated as well to match the updates othe speculative
RRT.

Branches and jumps update tReG_rip pseudo architectural register, while all other uops simply
incrementREG_rip by the number of bytes in the x86 instruction being committ€de number
of bytes (1-15) is stored in a 4-hiytes field of each uop in each x86 instruction.

Stores commit to the architectural state by writing dingttl the data cache, which in PTLsim
is equivalent to writing into real physical memory. Rememib@t a series of stores into a given
64-bit chunk of memory are merged within the store queuedcstare uop’s corresponding STQ
entry as the store uop issues, so the commit unit alwayss\é#ebits to the cache at a time. The
byte mask associated with the STQ entry of the store uop ttasenly update the modified bytes
in each chunk of memory in program order.

24.4 Additional Commit Actions for Full System Use

In full system PTLsim/X, several additional actions mustdlen at commit time:

Self modifying code checks must be done usimg_isdirty(mfn) , as described in Section
6.4

Stores must set the dirty bit on the target physical pageigusie smc_setdirty(mfn)
function (so as to properly notify subsequent instructioihself modifying code).

The x86 page table accessed and dirty bits must be updatetewdrea load or store com-
mits, using theContext.update_pte_acc_dirty() function.

If an interrupt is pending, and we have just committed thedagp in an atomic x86 instruc-
tion, we can now safely service it.

114

24.5 Physical Register Recycling Complications

24.5.1 Problem Scenarios

In some processor designs, it is not always possible to inatedy free the physical register
mapped to a given architectural register when that old sectural register mapping is overwrit-
ten during commit as described above. Out of order x86 pemresnust maintain three separate
rename table entries for the ZAPS, CF, OF flags in additioheéa¢gister rename table entry, any
or all of which may be updated when uops rename and retirerdipg on the uop’s flag renam-
ing semantics (see Secti®M), For this reason, even though a given physical registerevalay
become inaccessible and hence dead at commit time, the Bagsiated with that physical reg-
ister are frequently still referenced within the pipelise,the physical register itself must remain
allocated.

Consider the following specific example, with uops listegringram order:

e sub rax = rax,rbx
Assign RRTfax] = phys reg rO
Assign RRTjlags] =r0 (since SUB all updates flags)

® MOV rax = Icx
Assign RRTfax | = phys reg rl
No flags renamedMOV never updates flags, so RR&ps]is still r0.

e br.e target
Depends on flags attachedr®, even though actual architectural registex () for rO has
already been overwritten in the commit RRT by the MOV’s coinmie cannot free0 since
the BR uop might not have issued yet.

This situation only happens with instruction sets like x86d SPARC or even PowerPC to some
extent) which support writing flags (particularly multigledependent flags) and data in a single
instruction.

24.5.2 Reference Counting

For these reasons, we need to prevent U2’s register frongldesed if it is still referenced by
anything still in the pipeline; the normal reorder buffer ghanism cannot always handle this
situation in a very long pipeline.

One solution (the one used by PTLsim) is to give each physegikter a reference counter.
Physical registers can be referenced from three structasesperands to ROBs, from the spec-
ulative RRT, and from the committed RRT. As each uop operangmamed, the counter for

the corresponding physical register is incremented byngathePhysicalRegister::addref()

method. As each uop commits, the counter for each of its opleréss decremented via the

PhysicalRegister::unref() method. Similarlyunref() andaddref() are used whenever an

115

entry in the speculative RRT or commit RRT is updated. Dunmg-speculation recovery (see
Section20.3.2, unref() is also used to unlock the operands of uops slated for anmalfmally,
unref() andaddref() are used when loads and stores need to add a new dependensgidng
store queue entry (see Sectidisand22.2).

As we update the committed RRT during the commit stage, ttieegjister R mapped to the des-
tination architectural register A of the uop being comnditie examined. The register R is only
moved to thdree state iff its reference counter is zero. Otherwise, it is atbto thependingfree
state. The hardware examines the countepeoflingfregohysical registers every cycle and moves
physical registers to thieee state only when their counters become zero and they are metie-
ingfreestate.

24.5.3 Hardware Implementation

The hardware implementation of this scheme is straightiodvand low complexity. The counters
can have a very small number of bits since it is very unlikelyiveen physical register would be
referenced by all 100+ uops in the ROB; 3 bits should be entadiandle the typical maximum

of < 8 uops sharing a given operand. Counter overflows canlgistall renaming or flush the

pipeline since they are so rare.

The counter table can be updated in bulk each cycle by adulibggacting the appropriate sum or
just adding zero if the corresponding register wasn’'t uSsdce there are several stages between
renaming and commit, the same counter is never both incresti@md decremented in the same
cycle, so race conditions are not an issue.

In real processors, the Pentium 4 uses a scheme similars@miei but uses bit vectors instead.
For smaller physical register files, this may be a bettertemiu Each physical register has a bit
vector with one bit per ROB entry. If a given physical regiftéas still used by ROB entry E in the
pipeline, P’s bit vector bit R is set. Register P cannot bednentil all bits in its vector are zero.

24.6 Pipeline Flushes and Barriers

In some cases, the entire pipeline must be empty after a gimeeommits. For instance parrier
uop, represented by amyp (branch private) uop, will stall the frontend when first reread, and
when committed (at which point it is the only uop in the pipel, it will call flush_pipeline()

to restart fetching at the appropriate RIP. Exceptions tzagamilar effect when they reach the
commit stage. After doing this, the current architectuegisters must be copied into the externally
visible ctx.commitarf(] array, since normally the architectural registers argeat throughout
the physical register file. Fortunately, the commit stage apdatestx.commitarf{] in parallel
with the commit RRT, even though tkemmitarf array is never actually read by the out of order
core. Interrupts are a special case of barriers, the difterdeing they can be serviced aftery
x86 instruction commits its last uop.

At this point, thehandle_barrier() , handle_exception() or handle_interrupt() function
is called to actually communicate with the world outside the of order core. In the case of

116

handle_barrier() , generally this involves executing native code inside RfL® redirect exe-
cution into or out of the kernel, or to service a very compl8g xnstruction (e.gcpuid , floating
point save or restore, etc). Faindle_exception() , On userspace-only PTLsim, the simulation
is stopped and the user is notified that a genuine user vigible speculative) exception reached
the commit stage. In contrast, on full system PTLsim/X, @tioms are little more than jumps into
kernel space; this is described in detail in Chapter

If execution can continue after handling the barrier or etiom, theexternal_to_core_state()

function is called to completely reset the out of order ca@iagithe state stored atx.commitarf[]

This involves allocating a fixed physical register for eatthe 64 architectural registersdtx.commitarf[]
setting the speculative and committed rename tables to pineper cold start values, and re-
setting all reference counts on physical registers as gpipte. If the processor is configured
with multiple physical register files (Sectid8.3, the initial physical register for each architec-
tural register is allocated in the first physical registex @hly (this is configurable by modifying
external_to_core_state()). At this point, the main simulation loop can resume as ifphe-
cessor had just restarted from scratch.

117

Chapter 25

Cache Hierarchy

The PTLsim cache hierarchy model is highly flexible and canded to model a wide variety of
contemporary cache structures. The cache subsystem @léefideache.h and implemented by
dcache.cpp) by default consists of four levels:

e L1 data cacheis directly probed by all loads and stores

e L1 instruction cache services all instruction fetches

e L2 cacheis shared between data and instructions, with data pathstihald caches
e L3 cacheis also shared and is optionally present

e Main memory is considered infinite in size but still has configurable elotaristics

These cache levels are listed in order from highest levek<o the core) to lowest level (far
away). The cache hierarchy is assumed tanodusive i.e. any data in higher levels is assumed
to always be present in lower levels. Additionally, the @adtévels are generallyrite-through
meaning that every store updates all cache levels, rathantiaiting for a dirty line to be evicted.
PTLsim supports a 48-bit virtual address space and 40-lyipal addresses (full system PTL-
sim/X only) in accordance with the x86-64 standard.

25.1 General Configurable Parameters

All caches support configuration of:

e Line size in bytes. Any power of two size is acceptable, havekie line size of a lower
cache level must be the same or larger than any line size gh&hlevel cache. For example,
itis illegal to have 128 byte L1 lines with 64 byte L2 lines.

e Set count may be any power of two number. The total cache siagtes is of course (line
size) x (set countkx (way count)

118

e Way count (associativity) may be any number from 1 (direcpp®al) up to the set count
(fully associative). Note that simulation performanced&itock speed in a real processor)
will suffer if the associativity is too great, particularfigr L1 caches.

e Latency in cycles from a load request to the arrival of theadat

In dcache.h , the two base class€acheLine andCacheLineWithValidMask are interchange-
able, depending on the model being used. TheheLine class is a standard cache line with no
actual data (since the bytes in each line are simply held maong for simulation purposes).

The CacheLineWithValidMask class adds a bitmask specifying which bytes within the cache
line contain valid data and which are unknown. This is uskfuimplementing “no stall on store”
semantics, in which stores simply allocate a new way in thE@piate set but only set the valid
bits for those bytes actually modified by the store. The résh® cache line not touched by the
store can be brought in later without stalling the proceésoless a load tries to access them); this
is PTLsim’s default model. Additionally, this technique yrze used to implement sectored cache
lines, in which the line fill bus is smaller than the cache biee. This means that groups of bytes
within the line may be filled over subsequent cycles rathan il at once.

TheAssociativeArray template class itbgic.h forms the basis of all caches in PTLsim. To
construct a cache in which specific lines can be locked ir#oglthe_ockableAssociativeArray
template class may be used instead. FinallyGbemitRollbackCache template class is useful
for creating versions of PTLsim with cache level commitlvatk support for out of order commit,
fault recovery and advanced speculation techniques.

The various caches are defineddeache.h by specializations of these template classes. The
classes arelCache, L1ICache ,L2Cache andL3Cache.

25.2 Initiating a Cache Miss

As described in SectioRl, in the out of order core model, thssueload() function determines

if some combination of a prior store’s forwarded bytes (if)rand data present in the L1 cache
can fulfill a load. If not, this is a miss and lower cache levelsst be accessed. In this case, a
LoadStorelnfo structure (defined imicache.h) is prepared with various metadata about the
load, including which ROB entry and physical register to walp when the load arrives, its size,
alignment, sign extension properties, prefetch propeaia so on. Thissueload_slowpath()

function (defined inicache.cpp) is then called with this information, the physical addred®ad
and any data inherited from a prior store still in the pipeliheissueload_slowpath() func-
tion moves the load request out of the core pipeline and mda@ache hierarchy.

TheLoad Fill Request Queu& FRQ) is a structure used to hold information about anytaniging
loads that have missed any cache level. The LFRQ allows agtoable number of loads to be out-
standing at any time and provides a central control pointeeh cache lines arriving from the L2
cache or lower levels and the movement of the requested kttadrto the processor core to depen-
dent instructions. TheoadFillReq structure, prepared bysueload_slowpath() , contains
all the data needed to return a filled load to the core: theipalyaddress of the load, the data

119

and bytemask already known so far (e.g. forwarded from a gtare) and th&oadStorelnfo
metadata described above.

The Miss Buffer(MB) tracks all outstanding cache lines, rather than irdiral loads. Each MB
slot uses a bitmap to track one or more LFRQ entries that nebd awakened when the miss-
ing cache line arrives. After adding the newly createddFillReq entry to the LFRQ, the
MissBuffer::initiate_miss() method uses the missing line’s physical address to all@ate
new slot in the miss buffer array (or simply uses an existingita miss was already in progress
on a given line). In any case, the MB’s wakeup bitmap is uptladereflect the new LFRQ entry
referring to that line. Each MB entry containgyles field, indicating the number of cycles re-
maining for that miss buffer before it can be moved up the edérarchy until it reaches the core.
Each entry also contains two biisgche anddcache) indicating which L1 caches to which the
line should eventually be delivered; this is required beeaa single L2 line (and corresponding
miss buffer) may be referenced by both the L1 data and insbrucaches.

In initiate_miss() , the L2 and L3 caches are probed to see if they contain theéreegline.

If the L2 has the line, the miss buffer is placed into ®iIBATE_DELIVER_TO_L1state, indi-
cating that the line is now in progress to the L1 cache. Sihgjlan L2 miss but L3 hit re-
sults in theSTATE_DELIVER_TO_L2state, and a miss all the way to main memory results in
STATE_DELIVER_TO L3

In the very unlikely event that either the LFRQ slot or missféuare full, an exception is re-
turned to out of order core, which typically replays the etféel load until space in these structures
becomes available. For prefetch requests, only a missrhafédlocated; no LFRQ slot is needed.

25.3 Filling a Cache Miss

The MissBuffer::clock() method implements all synchronous state transitions. &cin ac-
tive miss buffer, theycles counter is decremented, and if it becomes zero, the MB’seatirr
state is examined. If a given miss buffer was in8TATE_DELIVER_TO_L3state (i.e. in progress
from main memory) and the cycle counter just became zermeaiti the L3 cache is validated
with the incoming data (this may involve evicting anotheelin the same set to make room). The
MB is then moved to the next state up the cache hierarchySIT&TE_DELIVER_TO_LZ2in this
example) and its cycles field is updated with the latency efdache level it is now leaving (e.g.
L3_LATENCYin this example).

This process continues with successive levels until the BBithe STATE_DELIVER_TO_L1
state and its cycles field has been decremented to zero. NIBig dcache bit is set, the L1
corresponding line is validated and tlfwe;.wakeup() method is called to invoke a new state
machine to wake up any loads waiting on the recently filled (ass known from the MB’Brgmap
bitmap). If the MB’sicache bit was set, the line is validated in the L1 instruction cacrel the
PerCoreCacheCallbacks::icache_wakeup() callback is used to notify the out of order core’s
fetch stage that it may probe the cache for the missing limnadn any case, the miss buffer is
then returned to the unused state.

Each LFRQ slot can be in one of three statésg, waiting andready LFRQ slots remain in
the waiting state as long as they are referenced by a miss buffer; onckrdiveakeup()

120

method is called, all slots affiliated with that miss buffee anoved to theaeady state. The
LoadFillRequestQueue::clock() method finds up taMAX_WAKEUPS_PER_CYCLERQ
slots in thereadystate and wakes them up by calling HeeCoreCacheCallbacks::dcache_wakeup()
callback with the savetoadStoreinfo metadata. The out of order core handles this callback as
described in Sectiofl.4

For simulation purposes only, the value to be loaded is imately recorded as soon as the load
issues, independent of the cache hit or miss status. In aediWare, the LFRQ entry data would
be used to extract the correct bytes from the newly arriveel ind perform sign extension and
alignment. If the original load required bytes from a mietwif its source store buffer and the data
cache, the SFR data and mask fields in the LFRQ entry woulddxzktaogerform this merging op-
eration. The data would then be written into the physicaktegspecified by theoadStorelnfo
metadata and that register would be marked as ready befwdengea signal to the issue queues to
wake up dependent operations.

In some cases, the out of order core may need to annul speelyatxecuted loads. The cache
subsystem is notified of this through thenul_lIfrg_slot() function called by the core. This
function clears the specified LFRQ slot in each miss bufiégnap entry (since that slot should
no longer be awakened now that it has been annulled), ansltiied.FRQ entry itself.

25.4 Translation Lookaside Buffers

The following section applies to full system PTLsim/X onlyhe userspace version of PTLsim
does not model TLBs since doing so would be inaccurate: itissigally impossible to model
TLB miss delays without actually walking real page tabled ancountering the associated cache
misses. For more information, please see Sedi#bB.1concerning page translation in PTLsim/X.

121

Chapter 26

Branch Prediction

26.1 Introduction

PTLsim provides a variety of branch predictorsdranchpred.cpp . The branch prediction
subsystem is relatively independent of the core simulatdrcan be treated as a black box, so long
as it implements the interfacesbranchpred.h

The branch prediction subsystem always contains at leeesst ttistinct predictors for the three
main classes of branches:

e Conditional Branch Predictoreturns a boolean (taken or not taken) for each conditional
branch pr.cc uop)

e Branch Target Buffe(BTB) predicts indirect branchnip uop) targets

e Return Address StadRAS) predicts return instructions (i.e. specially markedirectjmp
uops) based on prior calls

e Unconditional branches(u) are never predicted since their destination is explicathy
coded.

All these predictors are accessed by the core througBrdrehPredictorinterface object.
Based on the opcode and other uop information, the corerdigtes the type flags of each branch
uop:

BRANCH_HINT_UNCONDr unconditional branches. These are never predicteck gime
destination is implied.

BRANCH_HINT_CONIior conditional branches.

BRANCH_HINT_INDIRECTfor indirect branches, including returns.

BRANCH_HINT_CALIfor calls (both direct and indirect). This implies that te¢urn address
of the call should be a should be pushed on the RAS.

122

e BRANCH_HINT_RETor returns (indirect branches). This implies that the metaddress
should be taken from the top RAS stack entry, not the BTB.

Multiple flags may be present for each uop (for instaBE&NCH_HINT_REAnNdBRANCH_HINT_INDIRECT
are both used for thijnp uop terminating an x86et instruction).

To make a prediction at fetch time, the core callsBhenchPredictorinterface::predict()

method, passing it RredictorUpdate structure. This structure is carried along with each uop
until it retires, and contains all the information neede@ventually update the branch predictor
at the end of the pipeline. The contents will vary dependingh@ predictor chosen, but in gen-
eral this structure contains pointers into internal prigticounter tables and various flags. The
predict() method fills in this structure.

As each uop commits, thBranchPredictorinterface::update() method is passed the
uop’s savedPredictorUpdate structure and the branch outcome (expected target RIP s/ersu
real target RIP) so the branch predictor can be updated. LsiR predictor updates only occur
at retirement to avoid corruption caused by speculativieungons.

26.2 Conditional Branch Predictor

The PTLsim conditional branch predictor is the most flexjmedictor, since it can be easily re-
placed. The default predictor implementedbianchpred.cpp is a selection based predictor.
In essence, two separate predictors are maintained.hibhary predictorhashes a shift register
of previously predicted branches into a table slot; thi$ dturns whether or not the branch with
that history is predicted as taken. PTLsim supports vamousbinations of the history and branch
address to providgsharebased semantics. ThHemodal predictoris simpler; it uses 2-bit sat-
urating counters to predict if a given branch is likely to bken. Finally, aselection predictor
specifies which of the two predictors is more accurate andlgdhme used for future predictions.
This style of predictor, sometimes callediiaFarling predictor, has been described extensively in
the literature and variations are used by most modern psoces

Through theCombinedPredictor ~ template class, the user can specify the sizes of all thegabl
(history, bimodal, selector), the history depth, the mdthmowhich the global history and branch
address are combined and so on. Alternatively, the comditibranch predictor can be replaced
with something entirely different if desired.

26.3 Branch Target Buffer

The Branch Target Buffer (BTB) is essentially a small cadie thaps indirect branch RIP ad-
dresses (i.ejmp uops) into predicted target RIP addresses. It is set ass@ciwith a user con-
figurable number of sets and ways. In PTLsim, the BTB doesala into account any indirect
branch history information. The BTB is a nearly universalisture in branch prediction; see the
literature for more information.

123

26.4 Return Address Stack

The Return Address Stack (RAS) predicts the target addrfesslioect jumps marked with the
BRANCH_HINT_RETlag. Whenever thBRANCH_HINT_RETag is passed to the predict() method,
the top RAS stack entry is returned as the predicted targetriding anything in the BTB.

Unlike the conditional branch predictor and BTB, the RAS afied speculatively in the frontend
pipeline, before the outcome of calls and returns are kndwirs allows better performance when
closely spaced calls and returns must be predicted as teefetmhed, before either the call or
corresponding return have actually executed. Howevernwha#ed with theBRANCH_HINT_RET
flag, thepredict() method only returns the RIP at the top of the RAS, but does ush pr pop
the RAS. This must be done after the corresponding or jmp (for direct and or indirect calls,
respectively) oimp (for returns) uop is actually allocated in the ROB.

This approach is required since the RAS is speculativelyatgmt if uops must be annulled (be-
cause of branch mispredictions or mis-speculations), nhelanent occurs by walking backwards
in the ROB until the excepting uop is encountered. HowevWdhe RAS were updated during

the fetch stage, some uops may not be in the ROB yet and heacelliback logic cannot undo

speculative changes made to the RAS by these uops. ThissciduesRAS to get out of alignment
and performance suffers.

To solve this problem, the RAS is only updated in the allostége immediately after fetch. In
the out of order core’eename() function, theBranchPredictorinterface::updateras()

method is called to either push or pop an entry from the RA8s(paish entries, returns pop en-
tries). Unlike the conditional branch predictor and BTBstis the only place the RAS is updated,
rather than performing updates at commit time.

If uops must be annulled, tieorderBufferEntry::annul() method calls th8ranchPredictorinterfac
method with théPredictorUpdate structure for each uop it encounters in reverse progranr.orde
This method effectively undoes whatever change was madetRAS when theipdateras()

method was called with the sanPeedictorUpdate information during renaming and alloca-

tion. This is possible becausedateras() saves checkpoint information (namely, the old RAS

top of stack and the value at that stack slot) before updatiadRAS; this allows the RAS state

to be rolled backwards in time as uops are annulled in reyanggram order. At the end of the
annulment process when fetching is restarted at the cdri€the RAS state should be identical

to the state that existed before the last uop to be annullsdwginally fetched.

124

Part V

Appendices

125

Chapter 27

PTLsIim uop Reference

The following sections document the semantics and encaafiegch micro-operation (uop) sup-
ported by the PTLsim processor core. Tdpmnfo[] table inptlhwdef.cpp ~ and constants in
ptihwdef.h give actual numerical values for the opcodes and other faedsribed below.

126

Merging Rules

Mnemonic Syntax Operation
op rd = ra,rb rd = ra < (ra op rb)

Merging Rules:

The x86 compatible ALUs implement operations on 1, 2, 4 or 8 byte quantities. Unless
otherwise indicated, all operations take a 2-bit size shift field (sz) used to determine the
effective size in bytes of the operation as follows:

e sz = 0: Low byte of rd is set to the 8-bit result; high 7 bytes of rd are set to corre-
sponding bytes of ra.

e sz = 1: Low two bytes of rd is set to the 16-bit result; high 6 bytes of rd are set to
corresponding bytes of ra.

e sz = 2: Low four bytes of rd is set to the 32-bit result; high 4 bytes of rd are cleared
to zero in accordance with x86-64 zero extension semantics. The ra operand is
unused and should be REG_zero.

e sz = 3. All 8 bytes of rd are set to the 64-bit result. ra is unused and should be
REG_zero.

Flags are calculated based on the sz-byte value produced by the ALU, not the final 64-bit
result in rd.

Other Pseudo-Operators

The descriptions in this reference use various pseudo-operators to describe the semantics
of each uop. These operators are described below.

EvalFlags(ra)

The EvalFlags pseudo-operator evaluates the ZAPS, CF, OF flags attached to the source
operand ra in accordance with the type of condition code evaluation specified by the uop.
The operator returns 1 if the evaluation is true; otherwise 0 is returned.

SignExt(ra, N)

The SignExt operator sign extends the ra operand by the number of bits specified by N.
Specifically, bit ra[N] is copied to all high order bits from bit 63 down to bit N. If N is not
specified, it is assumed to mean the number of bits in the effective size of the uop’s result
(as described under Merging Rules).

MergeWithSFR(mem, sfr)
127

The MergeWithSFR pseudo-operator is described in the reference page for load uops.
MergeAlign(mem, sfr)
The MergeAlign pseudo-operator is described in the reference page for load uops.

128

nmov and or xor andnot ornot nand nor eqv
Logical Operations

Mnemonic Syntax Operation

nmov rd = ra,rb rd=ra«rb
and rd = ra,rb rd=ra<—ra&rb
or rd = ra,rb rd=ra«<ra|rb
Xor rd = ra,rb rd=ra<ra”rb
andnot rd = ra,rb rd=ra« (~ra) &rb
or not rd = ra,rb rd=ra«— (~ra) | rb
nand rd = ra,rb rd =ra «— ~(ra & rb)
nor rd = ra,rb rd =ra «— ~(ra | rb)
eqv rd = ra,rb rd =ra «— ~(ra " rb)

Notes:

¢ All operations merge the ALU result with ra and generate flags in accordance with
the standard x86 merging rules described previously.

129

add sub addadd addsub subadd subsub addm subm addc subc
Add and Subtract

Mnemonic Syntax Operation

add rd = ra,rb rd=ra<—ra+rb

sub rd = ra,rb rd=ra<ra-rb

adda rd = rarbyrc *S rd=ra«<ra+rb+ (rc<<5S)

adds rd = rarbrc *S rd=ra<ra-rb+(rc<<5S)

addm rd = ra,rb,rc rd=ra« (ra+rb)&rc

subm rd = ra,rb,rc rd=ra« (ra-rb)&rc

addc rd = ra,rb,rc rd =ra < (ra + rb) + rc.cf

subc rd = ra,rb,rc rd =ra < (ra-rb) - rc.cf
Notes:

e All operations merge the ALU result with ra and generate flags in accordance with
the standard x86 merging rules described previously.

e The adda and adds uops are useful for small shifts and x86 three-operand LEA-style
address generation.

e The addc and subc uops use only the carry flag field of their rc operand; the value
is unused.

e The addm and subm uops mask the result by the immediate in rc. They are used in
microcode for modular stack arithmetic.

130

sel
Conditional Select

Mnemonic Syntax Operation
sel . cc rd = ra,rb,(rc) rd = ra «— (EvalFlags(rc)) ? rb : ra
Notes:

e cc is any valid condition code flag evaluation

e The sel uop merges the selected operand with ra in accordance with the standard
x86 merging rules described previously

e The 64-bit result and all flags are treated as a single value for selection purposes,
i.e. the flags attached to the selected input are passed to the output

e If one of the (ra, rb) operands is not valid (has FLAG_INV set) but the selected
operand is valid, the result is valid. This is an exception to the invalid bit propa-
gation rule only when the selected input is valid. If the rc operand is invalid, the
result is always invalid.

¢ If any of the inputs are waiting (FLAG_WAITis set), the uop does not issue, even if
the selected input was ready. This is a pipeline simplification.

e setrd =(a),b

e selrd=Db,0,1,c

131

set
Conditional Set

Mnemonic Syntax Operation
set.cc rd = ra,rb,(rc) rd = ra «— EvalFlags(rc) ? rb: 0
Notes:

e cc is any valid condition code flag evaluation

e The value 0 or 1 is zero extended to the operation size and merged with rb in ac-
cordance with the standard x86 merging rules described previously (except that set
uses rb as the merge target instead of ra)

e Flags attached to ra (condition code) are passed through to the output

132

set.sub set.and
Conditional Compare and Set

Mnemonic Syntax Operation

set.sub.cc rd = rarb,rc rd =rc — EvalFlags(ra-rb) ? 1: 0

set.and.cc rd = ra,rb,rc rd =rc — EvalFlags(ra &rb)? 1: 0
Notes:

e The set.sub and set.and uops take the place of a sub or and uop immediately
consumed by a set uop; this is intended to shorten the critical path if uop merging
is performed by the processor

e cc is any valid condition code flag evaluation

e The value O or 1 is zero extended to the operation size and then merged with rc in
accordance with the standard x86 merging rules described previously (except that
set.sub and set.and use rc as the merge target instead of ra)

e Flags generated as the result of the comparison are passed through with the result

133

br

Conditional Branch

Mnemonic Syntax Operation
br.cc rip = (ra,rb),riptaken,ripseq rip = EvalFlags(ra) ? riptaken : ripseq
Notes:

e cc is any valid condition code flag evaluation

e Therip (user-visible instruction pointer register) is reset to one of two immediates. If

the flags evaluation is true, the riptaken immediate is selected; otherwise the ripseq
immediate is selected.

If the flag evaluation is false (i.e., ripseq is selected), the BranchMispredict internal
exception is raised. The processor should annul all uops after the branch and restart
fetching at the RIP specified by the result (in this case, ripseq).

Branches are always assumed to be taken. If the branch is predicted as not taken
(i.e. future uops come from the next sequential RIP after the branch), it is the re-
sponsibility of the decoder or frontend to swap the riptaken and ripseq immediates
and invert the condition of the branch. All condition encodings can be inverted by
inverting bit O of the 4-bit condition specifier.

The destination register should always be REG_rip ; otherwise this uop is undefined.

If the target RIP falls within an unmapped page, not present page or a page marked
as no-execute (NX), the PageFaultOnExec exception is taken.

¢ No flags are generated by this uop

134

br.sub br.and
Compare and Conditional Branch

Mnemonic Syntax Operation

br.cc rip = ra,rb,riptaken,ripseq rip = EvalFlags(ra - rb) ? riptaken : ripseq

br.cc rip = ra,rb,riptaken,ripseq rip = EvalFlags(ra & rb) ? riptaken : ripseq
Notes:

e The br.sub and br.and uops take the place of a sub or and uop immediately con-
sumed by a br uop; this is intended to shorten the critical path if uop merging is
performed by the processor

e cc is any valid condition code flag evaluation

e Therip (user-visible instruction pointer register) is reset to one of two immediates. If
the flags evaluation is true, the riptaken immediate is selected; otherwise the ripseq
immediate is selected

o If the flag evaluation is false (i.e., ripseq is selected), the BranchMispredict internal
exception is raised. The processor should annul all uops after the branch and restart
fetching at the RIP specified by the result (in this case, ripseq)

e Branches are always assumed to be taken. If the branch is predicted as not taken
(i.e. future uops come from the next sequential RIP after the branch), it is the re-
sponsibility of the decoder or frontend to swap the riptaken and ripseq immediates
and invert the condition of the branch. All condition encodings can be inverted by
inverting bit O of the 4-bit condition specifier.

e The destination register should always be REG_rip ; otherwise this uop is undefined

o If the target RIP falls within an unmapped page, not present page or a page marked
as no-execute (NX), the PageFaultOnExec exception is taken.

e Flags generated as the result of the comparison are passed through with the result

135

jmp
Indirect Jump

Mnemonic Syntax Operation
jmp rip = ra,riptaken rp =ra
Notes:

e Therip (user-visible instruction pointer register) is reset to the target address spec-
ified by ra

e If the ra operand does not match the riptaken immediate, the BranchMispredict
internal exception is raised. The processor should annul all uops after the branch
and restart fetching at the RIP specified by the result (in this case, ra)

¢ Indirect jumps are always assumed to match the predicted target in riptaken. If some
other target is predicted, it is the responsibility of the decoder or frontend to set the
riptaken immediate to that predicted target

e The destination register should always be REG_rip ; otherwise this uop is undefined

¢ If the target RIP falls within an unmapped page, not present page or a marked as
no-execute (NX), the PageFaultOnExec exception is taken.

¢ No flags are generated by this uop

136

j mpp
Indirect Jump Within Microcode

Mnemonic Syntax Operation
j mpp null = ra,riptaken internalrip = ra
Notes:

e The jmpp uop redirects uop fetching into microcode not accessible as x86 instruc-
tions. The target address (inside PTLsim, not x86 space) is specified by ra

e If the ra operand does not match the riptaken immediate, the BranchMispredict
internal exception is raised. The processor should annul all uops after the branch
and restart fetching at the RIP specified by the result (in this case, ra)

¢ Indirect jumps are always assumed to match the predicted target in riptaken. If some
other target is predicted, it is the responsibility of the decoder or frontend to set the
riptaken immediate to that predicted target

e The destination register should always be REG_rip ; otherwise this uop is undefined

e The user visible rip register is not updated after this uop issues; otherwise it would
point into PTLsim space not accessible to x86 code. Updating is resumed after
a normal jmp issues to return to user code. It is the responsibility of the decoder
to move the user address to return to into some temporary register (traditionally
REG_sr2 but this is not required).

¢ No flags are generated by this uop

137

bru
Unconditional Branch

Mnemonic Syntax Operation
bru rip = riptaken rip = riptaken
Notes:

e Therip (user-visible instruction pointer register) is reset to the specified immediate.
The processor may redirect fetching from the new RIP

e No exceptions are possible with unconditional branches

e If the target RIP falls within an unmapped page, not present page or a marked as
no-execute (NX), the PageFaultOnExec exception is taken.

¢ No flags are generated by this uop

138

br p
Unconditional Branch Within Microcode

Mnemonic Syntax Operation
bru null = riptaken internalrip = riptaken
Notes:

e The brp uop redirects uop fetching into microcode not accessible as x86 instruc-
tions. The target address (inside PTLsim, not x86 space) is specified by the riptaken
immediate

e The rip (user-visible instruction pointer register) is reset to the specified riptaken
immediate. The processor may redirect fetching from the new RIP

e No exceptions are possible with unconditional branches

e The user visible rip register is not updated after this uop issues; otherwise it would
point into PTLsim space not accessible to x86 code. Updating is resumed after a
normal jmp uop issues to return to user code. It is the responsibility of the decoder
to move the user address to return to into some temporary register (traditionally
REG_sr2 but this is not required).

¢ No flags are generated by this uop

139

chk

Check Speculation

Mnemonic Syntax Operation
chk. cc rd = ra,recrip,extype rd = EvalCheck(ra) ? O : recrip
Notes:

The chk uop verifies certain properties about ra. If this verification check passes, no
action is taken. If the check fails, chk signals an exception of the user specified type
in the rc immediate. The result of the chk uop in this case is the user specified RIP
to recover at after the check failure is handled in microcode. This recovery RIP is
saved in the recoveryrip internal register.

This mechanism is intended to allow simple inlined uop sequences to branch into
microcode if certain conditions fail, since normally inlined uop sequences cannot
contain embedded branches. One example use is in the REPseries of instructions
to ensure that the count is not zero on entry (a special corner case).

Unlike most conditional uops, the chk uop directly checks the numerical value of ra
against zero, and ignores any attached flags. Therefore, the cc condition code flag
evaluation type is restricted to the subset (e, ne, be, nbe, I, nl, le, nle).

No flags are generated by this uop

140

| d

ld.lo I'd.hi Idx Idx.lo Idx.hi

Load
Mnemonic Syntax Operation
I d rd = [ra,rb],sfra rd = MergeWithSFR(mem([ra + rb], sfra)
ld.lo rd = [ra+rb],sfra rd = MergeWithSFR(mem[floor(ra + rb), 8],
sfra)
| d. hi rd = [ra+rb],rc,sfra rd = MergeAlign(
MergeWithSFR(mem|(floor(ra + rb), 8) + 8],
sfra), rc)
Notes:

The PTLsim load unit model is described in substantial detail in Section 21; this
section only gives an overview of the load uop semantics.

The Id family of uops loads values from the virtual address specified by the sum ra
+rb. The Id form zero extends the loaded value, while the Idx form sign extends
the loaded value to 64 bits.

All values are zero or sign extended to 64 bits; no subword merging takes place as
with ALU uops. The decoder is responsible for following the load with an explicit mov
uop to merge 8-bit and 16-bit loads with their old destination register.

The sfra operand specifies the store forwarding register (a.k.a. store buffer) to merge
with data from the cache to form the final result. The inherited SFR may be deter-
mined dynamically by querying a store queue or can be predicted statically.

If the load misses the cache, the FLAG_WAITflag of the result is set.

Load uops do not generate any other condition code flags

Unaligned Load Support:

e The processor supports unaligned loads via a pair of Id.lo and Id.hi uops; an

overview can be found in Section 5.6. The alignment type of the load is stored in the
uop’s cond field (0 =1Id ,1=Id.lo ,2=Id.hi).

The Id.lo uop rounds down its effective address [ra + rb| to the nearest 64-bit
boundary and performs the load. The ld.hi uop rounds [ra + b + 8] up to the next
64-bit boundary, performs a load at that address, then takes as its third rc operand
the first (Id.lo) load’s result. The two loads are concatenated into a 128-bit word
and the final unaligned data is extracted (and sign extended if the Idx form was
used).

141

e Special corner case for when the actual user address (ra + rb) did not actually re-
quire any bytes in the 8-byte range loaded by the Id.hi uop (i.e. the load was
contained entirely within the low 64-bit aligned chunk). Since it is perfectly legal to
do an unaligned load to the very end of the page such that the next 64 bit chunk is
not mapped to a valid page, the Id.hi uop does not actually access memory; the
entire result is extracted from the prior Id.lo result in the rc operand.

Exceptions:

e UnalignedAccess if the address (ra + rb) is not aligned to an integral multiple of the
size in bytes of the load. Unaligned loads (Id.lo and Id.hi) do not generate this
exception. Since x86 automatically corrects alignment problems, microcode must
handle this exception as described in Section 5.6.

e PageFaultOnRead if the virtual address (ra + rb) falls on a page not accessible to
the caller in the current operating mode, or a page marked as not present.

e Various other exceptions and replay conditions may exist depending on the specific
processor core model.

142

St

Store

Mnemonic Syntax Operation

st sfrd = [ra,rb],rc,sfra sfrd = MergeWithSFR((ra + rb), sfra, rc)

st.lo sfrd = [ra+rb],rc,sfra sfrd = MergeWithSFR(floor(ra + rb, 8), sfra, rc)

st. hi sfrd = [ra+rb],rc,sfra sfrd = MergeWithSFR(floor(ra + rb, 8) + 8, sfra, rc)
Notes:

e The PTLsim store unit model is described in substantial detail in Section 22.1; this
section only gives an overview of the store uop semantics.

e The st family of uops prepares values to be stored to the virtual address specified
by the sumra + rb.

e The sfra operand specifies the store forwarding register (a.k.a. store buffer) to merge
the data to be stored (the rc operand) into. The inherited SFR may be determined
dynamically by querying a store queue or can be predicted statically, as described
in 22.1.

e Store uops only generate the SFR for tracking purposes; the cache is only written
when the SFR is committed.

e The store uop may issue as soon as the ra and rb operands are ready, even if the rc
and sfra operands are not known. The store must be replayed once these operands
become known, in accordance with Section 22.2.

e Store uops do not generate any other condition code flags
Unaligned Store Support:

e The processor supports unaligned stores via a pair of stlo and st.hi uops; an
overview can be found in Section 5.6. The alignment type of the load is stored in the
uop’s cond field (0O =st , 1 =stlo ,2=sthi).

e Stores are handled in a similar manner, witlho andst.hi rounding down and up to
store parts of the unaligned value in adjacent 64-bit blocks

e The stlo uop rounds down its effective address |ra + rb| to the nearest 64-bit
boundary and stores the appropriately aligned portion of the rc operand that actually
falls within that range of 8 bytes. The Id.hi uop rounds [ra + rb+ 8] up to the
next 64-bit boundary and similarly stores the appropriately aligned portion of the rc
operand that actually falls within that high range of 8 bytes.

143

e Special corner case for when the actual user address (ra + rb) did not actually touch
any bytes in the 8-byte range normally written by the st.hi uop (i.e. the store was
contained entirely within the low 64-bit aligned chunk). Since it is perfectly legal to
do an unaligned store to the very end of the page such that the next 64 bit chunk is
not mapped to a valid page, the st.hi uop does not actually do anything in this case
(the bytemask of the generated SFR is set to zero and no exceptions are checked).

Exceptions:

e UnalignedAccess if the address (ra + rb) is not aligned to an integral multiple of the
size in bytes of the store. Unaligned stores (st.lo and st.hi) do not generate this
exception. Since x86 automatically corrects alignment problems, microcode must
handle this exception as described in Section 5.6.

e PageFaultOnWrite if the virtual address (ra + rb) falls on a write protected page, a
page not accessible to the caller in the current operating mode, or a page marked
as not present.

e LoadStoreAliasing if a prior load is found to alias the store (see Section 22.2.1).

e Various other exceptions and replay conditions may exist depending on the specific
processor core model.

144

| dp | dxp
Load from Internal Microcode Space

Mnemonic Syntax Operation

| dp rd = [ra,rb] rd = MSR[ra+rb]

| dxp rd = [ra+rb] rd = SignExt(MSR[ra+rb])
Notes:

e The Idp and Idxp uops load values from the internal PTLsim address space not
accessible to x86 code. Typically this address space is mapped to internal machine
state registers (MSRs) and microcode scratch space. The internal address to ac-
cess is specified by the sum ra + rb. The Idp form zero extends the loaded value,
while the Idxp form sign extends the loaded value to 64 bits.

e Load uops do not generate any other condition code flags

¢ Internal loads may not be unaligned, and never stall or generate exceptions.

145

st p
Store to Internal Microcode Space

Mnemonic Syntax Operation
stp null = [ra,rb],rc MSR[ra+rb] =rc
Notes:

e The stp uop stores a value to the internal PTLsim address space not accessible to
x86 code. Typically this address space is mapped to internal machine state registers
(MSRs) and microcode scratch space. The internal address to store is specified by
the sum ra + rb and the value to store is specified by rc.

e Store uops do not generate any other condition code flags

e Internal stores may not be unaligned, and never stall or generate exceptions.

146

shl

shr sar rotl rotr rotcl rotcr

Shifts and Rotates

Mnemonic Syntax Operation

shl rd = ra,rb,rc rd =ra < (ra<<rb)

shr rd = ra,rb,rc rd =ra «— (ra >>rb)

sar rd = ra,rb,rc rd = ra « SignExt(ra >> rb)

rotl rd = ra,rb,rc rd = ra < (ra rotateleft rb)

rotr rd = ra,rb,rc rd = ra < (ra rotateright rb)

r ot cl rd = ra,rb,rc rd = ra «— ({rc.cf, ra} rotateleft rb)

rotcr rd = ra,rb,rc rd = ra «— ({rc.cf, ra} rotateright rb)
Notes:

The shift and rotate instructions have some of the most bizarre semantics in the en-
tire x86 instruction set: they may or may not modify flags depending on the rotation
count operand, which we may not even know until the instruction issues. This is
introduced in Section 5.9.

The specific rules are as follows:

— If the count b = 0 is zero, no flags are modified
— If the count b = 1, both OF and CF are modified, but ZAPS is preserved

— If the count b > 1, only the CF is modified. (Technically the value in OF is un-
defined, but on K8 and P4, it retains the old value, so we try to be compatible).

— Shifts also alter the ZAPS flags while rotates do not.

For constant counts (immediate rb values), the semantics are easy to determine in
advance.

For variable counts (rb comes from register), things are more complex. Since the
shift needs to determine its output flags at runtime based on both the shift count and
the input flags (CF, OF, ZAPS), we need to specify the latest versions in program
order of all the existing flags. However, this would require three operands to the shift
uop not even counting the value and count operands. Therefore, we use a collcc
(collect condition code flags, see Section 5.4) uop to get all the most up to date flags
into one result, using three operands for ZAPS, CF, OF. This forms a zero word with
all the correct flags attached, which is then forwarded as the rc operand to the shift.
This may add additional scheduling constraints in the case that one of the operands
to the shift itself sets the flags, but this is fairly rare. Conveniently, this also lets
us directly implement the 65-bit rotcl /rotcr uops in hardware with little additional
complexity.

All operations merge the ALU result with ra and generate flags in accordance with
the standard x86 merging rules described previously.

147

e The specific flags attached to the result depend on the input conditions described
above. The user should always assume these uops always produce the latest ver-
sion of each of the ZAPS, CF, OF flag sets.

148

mask
Masking, Insertion and Extraction

Mnemonic Syntax Operation
mask. x| z rd = ra,rb,[ms,mc,ds] See semantics below
Notes:

e The mask uop and its variants are used for generalized bit field extraction, insertion,
sign and zero extension using the 18-bit control field in the immediate

e These uops are used extensively within PTLsim microcode, but are also useful if the
processor supports dynamically merging a chain of shr , and, or uops.

e The condition code flags (ZAPS, CF, OF) are the flags logically generated by the
final AND operation.

Control Field Format
The 18-bit rc immediate has the following three 6-bit fields:

DS | MC | MS
12 | 6 0

e The mask uop and its variants are used for generalized bit field extraction, insertion,
sign and zero extension using the 18-bit control field in the immediate

Operation:
M = 1'[(ms+mc-1):ms]
T=(a&~M)| ((rh >>> ds) & M)
it (2) {

Zero extend

rd =ra « (T & 2’[(ms+mc-1):0])
else if (X) {

Sign extend

rd = ra <« (T[mstmc-1]) ? (T | 1'[63:(ms+mc)]) : (T & 1'[(ms+mc-1):0])
} else {

rd=ra « T

}

149

bswap

Byte Swap

Mnemonic Syntax Operation

bswap rd = ra rd=ra < ByteSwap(rb)
Notes:

e The bswap uop reverses the endianness of the rb operand. The uop’s effective result
size determines the range of bytes which are reversed.

e This uop’s semantics are identical to the x86 bswap instruction.

e This uop does not generate any condition code flags.

150

coll cc
Collect Condition Codes

Mnemonic Syntax Operation
collcc rd = ra,rb,rc rd.zaps = ra.zaps
rd.cf = rb.cf
rd.of = rc.of
rd = rd.flags
Notes:

e The collcc uop collects the condition code flags from three potentially distinct
source operands into a single output with the combined condition code flags in both
its appended flags and data.

e This uop is useful for collecting all flags before passing them as input to another uop
which only supports one source of flags (for instance, the shift and rotate uops).

151

NMOVCCIr novrcc

Move Condition Code Flags Between Register Value and Flag
Parts

Mnemonic Syntax Operation

movccr rd = ra rd=ra.flags
rd.flags =0
nmovr cc rd = ra rd.flags=ra
rd =ra
Notes:

e The movccr uop takes the condition code flag bits attached to ra and copies them
into the 64-bit register part of the result.

e The movrcc uop takes the low bits of the ra operand and moves those bits into the
condition code flag bits attached to the result.

e The bits moved consist of the ZF, PF, SF, CF, OF flags

e The WAIT and INV flags of the result are always cleared since the uop would not
even issue if these were set in ra.

152

andcc orcc ornotcc xorcc
Logical Operations on Condition Codes

Mnemonic Syntax

Operation

andcc rd = ra,rb
orcc rd = ra,rb
ornotcc rd = ra,rb
XO0r cc rd = ra,rb
Notes:

rd.flags = ra.flags & rb.flags
rd.flags = ra.flags | rb.flags
rd.flags = ra.flags | (~rb.flags)
rd.flags = ra.flags * rb.flags

e These uops are used to perform logical operations on the condition code flags at-

tached to ra and rb.

¢ If the rb operand is an immediate, the immediate data is used instead of the flags
normally attached to a register operand.

e The 64-bit value of the output is always set to zero.

153

mul | mul h
Integer Multiplication

Mnemonic Syntax Operation

mul | rd = ra,rb rd = ra < lowbits(ra x rb)

mul h rd = ra,rb rd = ra « highbits(ra x rb)
Notes:

e These uops multiply ra and rb, then retain only the low N bits or high N bits of the
result (where N is the uop’s effective result size in bits). This result is then merged
into ra.

e The condition code flags generated by these uops correspond to the normal x86
semantics for integer multiplication (imul); the flags are calculated relative to the
effective result size.

e The rb operand may be an immediate

154

bt bts btr btc

Bit Testing and Manipulation

Mnemonic Syntax

Operation

bt rd = ra,rb
bt s rd = ra,rb
btr rd = ra,rb
bt c rd = ra,rb
Notes:

rd.cf = ra[rb]

rd=ra « (rd.cf) ? -1: +1
rd.cf = ra[rb]
rd=ra«ra|(1<<rb)
rd.cf = ra[rb]

rd =ra «— ra& (~(1 <<rb))
rd.cf = ra[rb]
rd=ra«—ra”(1<<rb)

e These uops test a given bit in ra and then atomically modify (set, reset or comple-
ment) that bit in the result.

e The CF flag of the output is set to the original value in bit position rb of ra. Other
condition code flag bits in the output are undefined.

e The bt (bit test) uop is special: it generates a value of -1 or +1 if the tested bit is 1
or 0, respectively. This is used in microcode for setting up an increment for the rep

Xx86 instructions.

155

ctz clz
Count Trailing or Leading Zeros

Mnemonic Syntax Operation

ctz rd = ra rd.zf=(rb==0)
rd = ra < (rb) ? LSBIndex(rb) : O
clz rd =ra rd.zf=(rb==0)

rd =ra < (rb) ? MSBIndex(rb) : O
Notes:
e These uops find the bit index of the first "1’ bit in rb, starting from the lowest bit O (for
ctz) or the highest bit of the data type (for clz).
e The result is zero (technically, undefined) if ra is zero.

e The ZF flag of the result is 1 if rb was zero, or O if rb was nonzero. Other condition
code flags are undefined.

156

ct pop
Count Population of "1’ Bits

Mnemonic Syntax Operation
ct pop rd =ra rd.zf=(ra==0)
rd = PopulationCount(ra)

Notes:

e The ctpop uop counts the number of "1’ bits in the ra operand.

e The ZF flag of the result is 1 if ra was zero, or O if ra was nonzero. Other condition
code flags are undefined.

157

Floating Point Format and Merging

All floating point uops use the same encoding to specify the precision and vector format
of the operands. The uop’s size field is encoded as follows:

e 00: Single precision scalar floating point (opf p mnemonic). The operation is only
performed on the low 32 bits (in IEEE single precision format) of the 64-bit inputs;
the high 32 bits of the ra operand are copied to the high 32 bits of the output.

e 01: Single precision vector floating point (opf v mnemonic). The operation is per-
formed on both 32 bit halves (in IEEE single precision format) of the 64-bit inputs in
parallel

e 1x: Double precision scalar floating point (opf d mnemonic). The operation is per-
formed on the full 64 bit inputs (in IEEE double precision format)

Most floating point operations merge the result with the ra operand to prepare the desti-
nation. Since a full 64-bit result is generated with the vector and double formats, the ra
operand is not needed and may be specified as zero to reduce dependencies.

Exceptions to this encoding are listed where appropriate.

Unless otherwise noted, all operations update the internal floating point status register
(FPSR, equivalent to the MXCSR register in x86 code) by ORing in any exceptions that
occur. If the uop is encoded to generate an actual exception on excepting conditions, the
FLAG_INV flag is attached to the output to cause an exception at commit time.

No condition code flags are generated by floating point uops unless otherwise noted.

158

addf subf mulf divf m nf maxf
Floating Point Arithmetic

Mnemonic Syntax Operation

addf rd = ra,rb rd=ra«—ra+rb

subf rd = ra,rb rd=ra«<ra-rb

mul f rd = ra,rb rd=ra«raxrb

di vf rd = ra,rb rd=ra<ralrb

m nf rd = ra,rb rd=ra« (ra<rb)?ra:rb

maxf rd = ra,rb rd=ra« (ra>=rb)?ra:rb
Notes:

e These uops do arithmetic on floating point numbers in various formats as specified
in the Floating Point Format and Merging page.

159

maddf nsubf
Fused Multiply Add and Subtract

Mnemonic Syntax Operation

maddf rd = ra,rb,rc rd =ra <« (ra x rb) + rc

msubf rd = ra,rb,rc rd =ra <« (ra x rb) - rc
Notes:

e The maddf and msubf uops perform fused multiply and accumulate operations on
three operands.

e The full internal precision is preserved between the multiply and add operations;
rounding only occurs at the end.

e These uops are primarily used by microcode to calculate floating point division,
square root and reciprocal.

160

sgrtf rcpf rsqgrtf
Square Root, Reciprocal and Reciprocal Square Root

Mnemonic Syntax Operation
sqrtf rd = ra,rb rd = ra « sqrt(rb)

r cpf rd = ra,rb rd=ra<1/rb
rsqrtf rd = ra,rb rd =ra «— 1/ sqrt(rb)
Notes:

e These uops perform the specified unary operation on rb and merge the result into
ra (for a single precision scalar mode only)

e Thercpf andrsqgrtf uops are approximates - they do not provide the full precision
results. These approximations are in accordance with the standard x86 SSE/SSE2
semantics.

161

cnpf
Compare Floating Point

Mnemonic Syntax Operation
cnpf.type rd = ra,rb rd = ra « CompareFP(ra, rb, type) ? -1: 0

Notes:

e This uop performs the specified comparison of ra and rb. If the comparison is true,
the result is set to all 1’ bits; otherwise it is zero. The result is then merged into ra.

e The cond field in the uop encoding holds the comparison type. The set of compare
types matches the x86 SSE/SSE2 CMPxx instructions.

162

cnpccf
Compare Floating Point and Generate Condition Codes

Mnemonic Syntax Operation
cnpccf.type rd = rarb rd.flags = CompareFPFlags(ra, rb)

Notes:

e This uop performs all comparisons of ra and rb and produces x86 condition code
flags (ZF, PF, CF) to represent the result.

e The semantics of the generated condition code flags exactly matches the x86 SSE/SSE2
instructions COMIS3COMISBUCOMISEUCOMISD

e Unlike most encodings, the size field holds the comparison type of the two values
as follows:

— 00: cmpccfp : single precision ordered compare (same semantics as x86 SSE

COMISS

— 01: cmpccfp.u : single precision unordered compare (same semantics as x86
SSE UCOMISS

— 10: cmpccfd : double precision ordered compare (same semantics as x86
SSE2 COMISD

— 11: cmpccfd.u : double precision ordered compare (same semantics as x86
SSE2 UCOMISI)

163

cvtf.i2s.ins cvtf.i2s.p cvtf.i2d.lo cvtf.i2d.hi
Convert 32-bit Integer to Floating Point

Mnemonic Syntax Operation Used
By
cvtf.i2s.ins rd = rarb rd = ra < Int32ToFloat(rb) CVTSI2SS
cvtf.i2s.p rd = zero,rb rd[31:0] = Int32ToFloat(rb[31:0]) CVTPI2PS
rd[63:32] = Int32ToFloat(rb[63:32])
cvtf.i2d.lo rd = zero,rb rd = Int32ToDouble(rb[31:0]) CVTSI2SD
CVTPI2PD
cvtf.i2d. hi rd = zero,rb rd = Int32ToDouble(rb[63:32]) CVTPI2PD

Notes:

e These uops convert 32-bit integers to single or double precision floating point

e The semantics of these instructions are identical to the semantics of the x86 SSE/SSE?2
instructions shown in the table

e The uop size field is not used by these uops

164

cvtf.qg2s.ins cvtf.qg2ad
Convert 64-bit Integer to Floating Point

Mnemonic Syntax Operation Used
By
cvtf.qg2s.ins rd = rarb rd = ra « Int64ToFloat(rb) CVTSI2SS
(x86-64)
cvtf.g2d rd = ra rd = Inté4ToDouble(ra) CVTPI2PS
(x86-64)
Notes:

e These uops convert 64-bit integers to single or double precision floating point

e The semantics of these instructions are identical to the semantics of the x86 SSE/SSE?2
instructions shown in the table

e The uop size field is not used by these uops

165

cvtf.s2i cvt.s2q cvtf.s2i.p
Convert Single Precision Floating Point to Integer

Mnemonic Syntax Operation Used
By
cvtf.s2i rd = ra rd = FloatToIlnt32(ra[31:0]) CVTSS2S|
cvtf.s2i.p rd = ra rd[31:0] = FloatToInt32(ra[31:0]) CVTPS2PI
rd[63:32] = FloatToInt32(ra[63:32]) CVTPS2DQ
cvtf.s2q rd = ra rd = FloatTolnt64(ra) CVTSS2S|
(x86-64)

Notes:

e These uops convert single precision floating point values to 32-bit or 64-bit integers

e The semantics of these instructions are identical to the semantics of the x86 SSE/SSE?2
instructions shown in the table

¢ Unlike most encodings, the size field holds the rounding type of the result as follows:

— x0: normal IEEE rounding (as determined by FPSR)
— x1: truncate to zero

166

cvtf.d2i cvtf.d2q cvtf.d2i.p
Convert Double Precision Floating Point to Integer

Mnemonic Syntax Operation Used
By
cvt f. d2i rd = ra rd = DoubleToInt32(ra) CVTSD2SI
cvtf.d2i.p rd = rarb rd[63:32] = DoubleTolnt32(ra) CVTPD2PI
rd[31:0] = DoubleTolnt32(rb) CVTPD2DQ
cvtf.d2q rd = ra rd = DoubleTolnt64(ra) CVTSD2SI
(x86-64)

Notes:

e These uops convert double precision floating point values to 32-bit or 64-bit integers

e The semantics of these instructions are identical to the semantics of the x86 SSE/SSE?2

instructions shown in the table

e Unlike most encodings, the size field holds the rounding type of the result as follows:

— x0: normal IEEE rounding (as determined by FPSR)
— x1: truncate to zero

167

cvtf.d2s.ins cvtf.d2s.p cvtf.s2d.lo cvtf.s2d. hi
Convert Between Double Precision and Single Precision Float-
ing Point

Mnemonic Syntax Operation Used
By
cvtf.d2s.ins rd = rarb rd = ra «— DoubleToFloat(rb) CVTSD2SS
cvtf.d2s.p rd = ra,rb rd[63:32] = DoubleToFloat(ra) CVTPD2PS
rd[31:0] = DoubleToFloat(rb)
cvtf.s2d.lo rd = zero,rb rd = FloatToDouble(rb[31:0]) CVTSS2SD
CVTPS2PD
cvtf.s2d. hi rd = zero,rb rd = FloatToDouble(rb[63:32]) CVTPS2PD

Notes:
e These uops convert single precision floating point values to double precision floating
point values

e The semantics of these instructions are identical to the semantics of the x86 SSE/SSE?2
instructions shown in the table

e The uop size field is not used by these uops

168

Chapter 28

Performance Counters

PTLsim maintains hundreds of performance and statistmahters and data points as it simulates
user code. In Sectio8, the basic mechanisms and data structures through whiclsifTd¢ol-
lects these data were disclosed, and a guide to extendirexisteng set of collection points was
presented.

This section is a reference listing of all the current perfance counters present in PTLsim by
default. The sections below are arranged in a hierarchiealformat, just as the data are repre-
sented in PTLsim’s data store. The types of data collectesbty match the performance counters
available on modern Intel and AMD x86 processors, as desgrib their respective reference
manuals.

28.1 General

As described in SectioB, PTLsim maintains a hierarchical tree of statistical dakefined in
stats.h . The data store contains a potentially large number of $rp®f this tree, numbered
starting at 0. The final snapshot, taken just before simalatompletes, is labeled as “final”. Each
snapshot branch contains all of the data structures deskcnibthe next few sections. Snapshots
are enabled with thenapshot-cycles configuration option (Sectioh0.3); if they are disabled,
only the “0” and “final” snapshots are provided.

28.2 Summary

Thesummary toplevel branch summarizes information about the simaatiin across all cores:

summary: general information

e cycl es: total number of simulated cycles completed

e insns: total number of complete x86 instructions committed
169

e uops: total number of uops committed

e basic_bl ocks: total number of basic blocks executed

snapshot _uui d: the universally unique ID (UUID) of this snapshot. This nwenistarts from 0
and increases to infinity.

snapshot _name: name of this snapshot, if any. Named snapshots can be takkagagall_snapshot()
call within the virtual machine, or by thenapshot-now namecommand.

28.3 Simulator

Thesimulator toplevel branch represents information about PTLsimfitsel
ver si on: PTLsim version information

e buil d_tinestanp: the date and time PTLsim (specificalpyisim.o) was last built
e svn_revi si on: Subversion revision number for this PTLsim version

e svn_tinestanp: Date and time of Subversion commit for this version

e buil d_host nane: machine name on which PTLsim was compiled

e buil d_conpi | er: gcc compiler version used to build PTLsim
run: runtime environment information

e tinestanp: time (in POSIX seconds-since-epoch format) this instarfcBTd.sim was
started

e host nane: machine name on which PTLsim is running

e kernel _version: Linux kernel version PTLsim is running under. For PTLsimtKis is
the domain O kernel version

e hypervi sor_version: PTLsim/X Xen hypervisor version

e execut abl e: the executable file being run under simulation (userspadtsifiTonly)
e args: the arguments to the executable file (userspace PTLsim only)

e native_cpui d: CPUID (brand/model/revision) of the host machine runniig.$m

e native_hz: core frequency (cycles per second) of the host machine

confi g: the configuration options last passed to PTLsim for this run

per f or mance: PTLsim internal performance data
170

e rate: operations per wall-clock second (i.e. in outside world; ingide the virtual ma-
chine), averaged over entire run. These are the statusiflesim prints on the console and
in the log file as it runs.

— cycl es_per_second: simulated cycles completed per second
— i ssues_per_second: uops issued per second
— user _conmi ts_per_second: X86 instructions committed per second

28.4 Decoder

The decoder toplevel branch represents the x86-to-uop decoder, bdsok lzache, code page
cache and other common structures:

t hr oughput : total decoded entities

e basi c_bl ocks: total basic blocks (uop sequence terminated by a branclodeec
e x86_i nsns: total x86 instructions decoded
e uops: total uops produced from all decoded x86 instructions

e bytes: total bytes in all decoded x86 instructions
bb_decode_t ype: predominant decoder type used for each basic block

e all _insns_fast: number of basic blocks all instructions in the basic blockene the sim-
ple regular subset of x86 and could be decoded entirely bfattelecoderdecode-fast.cpp)

e some_i nsns_conpl ex: number of basic blocks in which one or more instructions regu
complex decoding

page_crossi ngs: alignment of instructions within page

e within_page: number of basic blocks in which all bytes in the basic blodkvethin a
single page

e crosses_page: number of basic blocks in which some bytes crossed a pagedboyfi.e.
required two MFN invalidate locators)

bbcache: basic block cache accesses

e count: basic blocks currently in the cache (i.e. at the time thes slahpshot was made)

e inserts: total insert operations
171

e invalidates: invalidation operations by type

— snc: self modifying code required page to be invalidated
— dma: DMA into page with existing translations required page torvalidated

— spurious: exec_page_fault assist determined the page has now been made exe-
cutable

— recl ai m garbage collector discarded unused LRU basic blocks
— dirty: page was already dirty when new translation was to be made
— enpty: page was empty (has no basic blocks)

pagecache: physical code page cache

e count: physical pages currently in the cache (i.e. at the time s shapshot was made)
e inserts: total physical page insert operations

e invalidates: invalidation operations by type

— snc: self modifying code required page to be invalidated
— dma: DMA into page with existing translations required page torvalidated

— spurious: exec_page_fault assist determined the page has now been made exe-
cutable

— recl ai m garbage collector discarded unused LRU basic blocks
— dirty: page was already dirty when new translation was to be made
— enpty: page was empty (has no basic blocks)

recl ai m rounds: number of times the memory manager attempted to reclaimeahuessic blocks
(possibly with several attempts until enough memory wasdaivie)

28.5 Out of Order Core

The out of order core is represented by éhecore toplevel branch of the statistics data store tree:
cycl es: total number of processor cycles simulated

f et ch: fetch stage statistics

e st op: totals up the reasons why fetching finally stopped in eaclecyc

— stal |l ed: fetch unit was already stalled in the previous cycle

— i cache_ni ss: an instruction cache miss prevented further fetches
172

fetchg_ful | : the uop fetch queue is full

bogus_ri p: speculative execution redirected the fetch unit to an iessible (or non-
executable) page. The fetch unit remains stalled in thie statil the mis-speculation
is resolved.

m crocode_assi st: microcode assist must wait for pipeline to empty

branch_t aken: taken branches to non-sequential addresses always stbpfgt

ful | _wi dt h: the maximum fetch width was utilized without encounterimy af the
events above

e opcl ass: histogram of how many uops of various operation classeegddlsough the fetch
unit. The operation classes are definegtihwdef.n and assigned to various opcodes in
ptlhwdef.cpp

e wi dt h: histogram of the fetch width actually used on each cycle

e bl ocks: blocks of x86 instructions fetched (typically the processan read at most e.g. 16
bytes out of a 64 byte instruction cache line per cycle)

e uops: total number of uops fetched

e user _insns: total number of x86 instructions fetched
front end: frontend pipeline (decode, allocate, rename) statistics

e status: totals up the reasons why frontend processing finally stdppeach cycle

conpl et e: all uops were successfully allocated and renamed

f et chg_enpty: No more uops were available for allocation
rob_ful I : reorder buffer (ROB) was full

physregs_ful | : physical register file was full even though an ROB slot was fre

I dg_ful I : load queue was full (too many loads in the pipeline) evendghquhysical
registers were available

stq_ful I : store queue was full (too many stores in the pipeline)

e wi dt h: histogram of the frontend width actually used on each cycle

e renaned: summarizes the type of renaming that occurred for each udhéaestination,
not the operands)

— none: uop did not rename its destination (primarily for stores brahches)
— reg: uop renamed destination architectural register

— flags: uop renamed one or more of the ZAPS, CF, OF flag sets but hadstioat&on
architectural register

173

— reg_and_f 1 ags: uop renamed one or more of the ZAPS, CF, OF flag sets as well as a
destination architectural register

e all oc: summarizes the type of resource allocation that occurreddoh uop (in addition
to its ROB slot):

— reg: uop was allocated a physical register

— I dreg: uop was a load and was allocated both a physical register éadaqueue
entry

— sfr: uop was a store and was allocated a store forwarding re@®#dR), a.k.a. store
queue entry

— br: uop was a branch and was allocated branch-related resqpassbly including
a destination physical register)

di spat ch: dispatch unit statistics

e source: totals up where each operand to each uop currently residbd eime the uop was
dispatched. These statistics are broken out by cluster.

wai ti ng: how many operands were waiting (i.e. not yet ready)

bypass: how many operands would come from the bypass network if thewere
immediately issued

physreg: how many operands were already written back to physicastes

archreg: how many operands would be obtained from architecturastecs

e cluster: tracks the number of uops issued to each cluster (or issuesjjirethe processor.
This list will vary depending on the processor configuratibhe valuenonemeans that no
cluster could accept the uop because all issue queues Were fu

e redi spat ch: statistics on the redispatch speculation recovery rmasimefsectior20.3.9

— trigger_uops measures how many uops triggered redispatching becausentd-a
speculation. This number does not count towards the statistlow.

— deadl ock_f | ushes measures how many times the pipeline must be flushed to eesolv
a deadlock.

— dependent _uops is a histogram of how many uops depended on each trigger obp, n
including the trigger uop itself.

i ssue: issue statistics

e resul t: histogram of the final disposition of issuing each uop

174

— no-fu: no functional unit was available within the uop’s assignegier even though
it was already issued

— repl ay: uop attempted to execute but could not complete, so it musairein the
issue queue to be replayed. This event generally occurs wiead or store detects a
previously unknown forwarding dependency on a prior stefeen the data to actually
store is not yet available, or when insufficient resourcesaarilable to complete the
memory operation. Details are given in Secti@dsand22.2

— mi sspecul ati on: uop mis-speculated and now all uops after and includingssesd
uop must be annulled. This generally occurs with loads (&e2tl) and stores (Section
22.2.9 when unaligned accesses or load-store aliasing occurs evént is handled in
accordance with Sectid20.3.2

— refetch: uop and all subsequent uops must be re-fetched to be decdtidrdly.
For example, unaligned loads and stores take this path ga#mebe cracked into two
parts after being refetched.

— branch_ni spredi ct: uop was a branch and mispredicted, such that all uops atter (b
not including) the branch uop must be annulled. See Se2tidar details.

— exception: uop caused an exception (though this may not be a user vesitdedue
to speculative execution)

— conpl ete: uop completed successfully. Note that this does mean the result is
immediately ready; for loads it simply means the requestiggased to the cache.

e source: totals up where each operand to each uop was read from as i sueesl

— bypass: how many operands came directly off the bypass network
— physreg: how many operands were read from physical registers
— archreg: how many operands were read from committed architectugaters

e wi dt h: histogram of the issue width actually used on each cycle ¢h etuster. This ob-
ject is further broken down by cluster, since various clissteave different issue width and
policies.

e opcl ass: histogram of how many uops of various operation classes issoed. The oper-
ation classes are definedgthwdef.h and assigned to various opcodegtihwdef.cpp

wri t eback: writeback stage statistics

e total _witebacks: total number of results written back to the physical regifte

e transient: transientversus persistent values

— transi ent: the result technically does not have to be written back toptmgsical
register file at all, since all consumers sourced the valtimefbypass network and the
result is no longer available since the destination arctutal register pointing to it has
since been renamed.

175

— persi stent: all values which do not meet the conditions above and henc still
be written back

e wi dt h: histogram of the writeback width actually used on each cytkach cluster. This
object is further broken down by cluster, since varioustelisshave different issue width and
policies.

conmmi t: commit unit statistics

e uops: total number of uops committed
e insns: total number of complete x86 instructions committed

e resul t: histogram of the final disposition of attempting to commitleaop

none: ONe Or more uops comprising the x86 instruction at the headeoROB were
not yet ready to commit, so commitment is terminated for tyate

ok: result was successfully committed

— exception: result caused a genuine user visible exception. In usesdpaksim, this
will terminate the simulation. In full system PTLsim/X, ¢his a normal and frequent
event. Floating point state dirty faults are counted unkisrdategory.

ski pbl ock: This occurs in rare cases when the processor must skip aveuthently
executing instruction (such as in pathological cases ofeex86 instructions).

barrier: the processor encountered a barrier instruction, such gstens call, as-

sist or pipeline flush. The frontend has already been stoppddfetching has been
redirected to the code to handle the barrier; this condsiorply commits the barrier
instruction itself.

snc: self modifying code: the instruction attempting to commaistbeen modified
since it was last decoded (see Sectof)

st op: special case for when the simulation is to be stopped aftenttting a certain
number of x86 instructions (e.g. via thgopinsns option in SectiorlL0.3).

e setflags: how many uops updated the condition code flags as they coetnitt

— yes: how many uops updated at least one of the ZAPS, CF, OF flaghe®HG _flags
internal architectural register)

— no: how many uops did not update any flags

e freereg: how many uops were able to free the old physical register e pptheir archi-
tectural destination register at commit time

— pendi ng: old physical register was still referenced within the pipelor by one or
more rename table entries

176

— free: old physical register could be immediately freed

free_regs_recycl ed: how many physical registers were recycled (garbage celitater
than normal because of one of the conditions above

wi dt h: histogram of the issue width actually used on each cycle ¢h etuster. This ob-
ject is further broken down by cluster, since various clissteave different issue width and
policies.

opcl ass: histogram of how many uops of various operation classes issued. The opera-
tion classes are defined piihwdef.h and assigned to various opcodepilhwdef.cpp

branchpr ed: branch predictor statistics

predi ctions: total number of branch predictions of any type
updat es: total number of branch predictor updates of any type

cond: conditional branchif.cc uop) prediction outcomes, broken down into correct pre-
dictions and mispredictions

i ndi r: indirect branchjmp uop) prediction outcomes, broken down into correct préafist
and mispredictions

return: return {mp uop with BRANCH_HINT_RETlag) prediction outcomes, broken down
into correct predictions and mispredictions

summary: summary of all prediction outcomes of the three types abbraken down into
correct predictions and mispredictions

ras: return address stack (RAS) operations

push: RAS pushes on calls
— push_overfl ows: RAS pushes on calls in which the RAS overflowed

pop: RAS pops on returns

pop_under f 1 ows: RAS pops on returns in which the RAS was empty

annul s: annulment operations in which speculative updates to th& Ri&re rolled
back

28.6 Cache Subsystem

The cache subsystem is listed underdbecore/dcache branch.

| oad:

load unit statistics

177

e i ssue: histogram of the final disposition of issuing each load uop

— conpl et e: cache hit

— mi ss: L1 cache miss, and possibly lower levels as well (Sectkindand25.2)

— exception: load generated an exception (typically a page fault), algihahe excep-
tion may still be speculative (Secti@i)

— ordering: load was misordered with respect to stores (Se@R.])

— unal i gned: load was unaligned and will need to be re-executed as a p&mnoand
high loads (Sections.6and21)

— repl ay: histogram of events in which a load needed to be replayedi(Betl)

x sfr-addr-and-data-not-ready: load was predicted to forward data from a

prior store (Sectior22.2.)), but neither the address nor the data of that store has
resolved yet

x sfr-addr-not-ready: load was predicted to forward data from a prior store, but
the address of that store has not resolved yet

x sfr-data-not-ready: load address matched a prior store in the store queue, but
the data that store should write has not resolved yet

x m ssbuf-full: load missed the cache but the miss buffer and/or LFRQ (Sectio
25.2) was full at the time

e hit: histogram of the cache hierarchy level each load finally hit

L1: L1 cache hit
L2: L1 cache miss, L2 cache hit

L3: L1 and L2 cache miss, L3 cache hit

mem all caches missed; value read from main memory

e forward: histogram of which sources were used to fill each load

— cache: how many loads obtained all their data from the cache

— sfr: how many loads obtained all their data from a prior store éndipeline (i.e. load
completely overlapped that store)

— sfr-and- cache: how many loads obtained their data from a combination of duhe
and a prior store

e dependency: histogram of how loads related to previous stores

— i ndependent : load was independent of any store currently in the pipeline

— predicted-alias-unresol ved: load was stalled because the load store alias predic-
tor (LSAP) predicted that an earlier store would overlagdiael’s address address even
though that earlier store’s address was unresolved ($e222.J)

178

— st g-address-mat ch: load depended on an earlier store still found in the storegue
e type: histogram of the type of each load uop

— al i gned: normal aligned loads
— unal i gned: special unaligned load uojislo orld.hi (Section5.6)
— internal : loads from PTLsim space by microcode

e size: histogram of the size in bytes of each load uop

e transfer-L2-to-L1: histogram of the types of L2 to L1 line transfers that ocatiff®ec-
tion 25)

— full-L2-to-L1: all bytesin cache line were transferred from L2 to L1 cache

— partial -L2-to-L1: some bytes in the L1 line were already valid (because of store
to those bytes), but the remaining bytes still need to bénéztc

— L2-to-L1I: all bytesin the L2 line were transferred into the L1 instioictcache

e dt| b: data cache translation lookaside buffer hit versus migs(&ectior25.4)
f et ch: instruction fetch unit statistics (Sectidi7.1)

e hit: histogram of the cache hierarchy level each fetch finally hit

L1: L1 cache hit

L2: L1 cache miss, L2 cache hit
L3: L1 and L2 cache miss, L3 cache hit
mem all caches missed; value read from main memory

e itlb: instruction cache translation lookaside buffer hit vensuss rate (Sectio@5.4)
pr ef et ches: prefetch engine statistics

e in-L1: requested data already in L1 cache
e in-L2: requested data already in L2 cache (and possibly also in tleja

e required: prefetch was actually required (data was not cached or wz& am lower levels)
m ssbuf : miss buffer performance (Sectio5.2and25.3

e inserts: total number of lines inserted into the miss buffer

179

e delivers: total number of lines delivered to various cache hierarewgls from the miss
buffer

— memt o- L3: deliver line from main memory to the L3 cache

L3-to- L2: deliver line to the L3 cache to the L2 cache

L2-to-L1D: deliver line from the L2 cache to the L1 data cache

L2-to- L1l : deliver line from the L2 cache to the L1 instruction cache

| frq: load fill request queue (LFRQ) performance (Sectidband25.3

i nserts: total number of loads inserted into the LFRQ
e wakeups: total number of loads awakened from the LFRQ

e annul s: total number of loads annulled in the LFRQ (after they weneudled in the pro-
cessor core)

e resets: total number of LFRQ resets (all entries cleared)
e total -latency: total latency in cycles of all loads passing through the LFRQ

e average-ni ss-1| atency: average load latency, weighted by cache level hit and |stenc
that level

wi dt h: histogram of how many loads were awakened per cycle by th&l. FR

st ore: Store unit statistics

e i ssue: histogram of the final disposition of issuing each store uop

— conpl et e: store completed without problems

— exception: store generated an exception (typically a page fault)paljh the excep-
tion may still be speculative (Secti@2.1)

— ordering: store detected that a later load in program order aliasedttite but was
issued earlier than the store (Sectkih2.)

— unal i gned: store was unaligned and will need to be re-executed as afdawand
high stores (Sectiorts.6)

— repl ay: histogram of events in which a store needed to be replayedi¢Bs22.2and
22.)

x wai t-sfraddr-sfrdata: neither the address nor the data of a prior store this
store inherits some of its data from was ready

x wai t -sfraddr: the data of a prior store was ready but its address was still un
available

180

x wai t -sfrdata: the address of a prior store was ready but its data was still un
available

* wai t - st or edat a- sf raddr - sfrdat a: the actual data value to store was not ready
(Section22.2), in addition to having neither the data nor the address ofoa gtore
(Section22.])

* wai t - st or edat a- sf raddr : the actual data value to store was not ready (Section
22.2), in addition to not having the address of the prior store(Ba 22.1)

* wai t - st or edat a- sfrdat a: the actual data value to store was not ready (Section
22.2), in addition to not having the data from the prior store (&&ec22.1)

f orwar d: histogram of which sources were used to construct the mestgeel buffer:

— zero: no prior store overlapping the current store was found irptheline

— sfr: data from a prior store in the pipeline was merged with thee/éb be stored to
form the final store buffer

t ype: histogram of the type of each store uop

— al i gned: normal aligned store
— unal i gned: special unaligned store uopslo orst.hi (Section5.6)
— internal : storesto PTLsim space by microcode

si ze: histogram of the size in bytes of each store uop

commi t : histogram of how stores are committed
— direct: store committed directly to the data cache in the commites(&gctior24)

conmi ts: total number of committed uops
user conmi ts: total number of committed x86 instructions

i ssues: total number of uops issued. This includes uops issued rharednce by through
replay (Sectiorl9.3.

i pc: Instructions Per Cycle (IPC) statistics

— conmi t-i n-uops: average number of uops committed per cycle
— i ssue-in-uops: average number of uops issued per cycle
— conmi t-in-user-insns: average number of Xx86 instructions committed per cycle

NOTE: Because one x86 instruction may be broken up into numerops, itasnever
appropriate to compare IPC figures for committed x86 insiwas per clock with IPC
values from a RISC machine. Furthermore, different x86 engntations use varying
numbers of uops per x86 instruction as a matter of encodingyen comparing the uop

181

based IPC between x86 implementations or RISC-like mashm@accurate. Users
are strongly advised to use relative performance measnsésaid (e.g. total cycles
taken to complete a given benchmark).

si mul at or: describes the performance of PTLsim itself. Useful for igrthe simulator.

e total _tinme: total time in secondgnot simulated cycles!)spent in various parts of the
simulator. Please refer to the source codenistore.cpp) for the range of code each time
value corresponds to.

e cputime: PTLsim simulator performance

— fetch: seconds spentin fetch stage

— decode: seconds spent decoding instructions (in decoder subsystem
— rename: seconds spent in allocate and rename stage

— frontend: seconds spent in frontend stages

— di spat ch: seconds spent in dispatch stage

— i ssue: seconds spentin ALU issue stage, not including loads amdssto
— i ssuel oad: seconds spent issuing loads

— i ssuestore: seconds spentissuing stores

conpl et e: seconds spent in completion stage

transfer: seconds spentin transfer stage
— wri teback: seconds spentin writeback stage
— commi t: seconds spent in commit stage

28.7 External Events

e assi sts: histogram of microcode assists invoked from any core

e traps: histogram of x86 interrupt vectors (traps) invoked from aaye (PTLsim/X only)

182

Bibliography

[1] XenSource Community Web Site.
[2] Xen page at Cambridge.
[3] Xen and the Art of Virtualization. Pratt et al. Ottowa Linux Symposium 2004.
[4] Xen page at Cambridge.
[5] Xen and the Art of Virtualization. Pratt et al. Ottowa Linux Symposium 2004.
[6] Xen 3.0 Virtualizationl. Pratt et al. FOSDEM 2006.
[7] Introduction to Xen 3.0.
[8] Xen Performance Study.
[9] QEMU InternalsF. Bellard. Tech Report, 2006.
[10] Bochs IA-32 Emulator Project.
[11] Virtualizing I/0O Devices on VMware Workstation’s Hostedil Machine MonitorJ. Sugerman et al.
[12] Simics.
[13] SimNow: Fast Platform Simulation Purely in Softw&aRe Bedichek (AMD). Hot Chips 2004.
[14] 1A-32 Intel Architecture Software Developer’'s Manual,Woke 3A: System Programming Guide, ParCh

[15] AMDG64 Architecture Programmer’s Manual, Volume 2: SysteogRamming,Chapter 15, “Secure Virtus

[16] E. Kelly et al.Translated memory protection apparatus for an advancedapiocessorJ.S.
Patent 6199152, filed 22 Aug 1996. Assn. Transmeta Corp.

[17] J. Banning et alFine grain translation discriminationU.S. Patent 6363336, filed 13 Oct
1999. Assn. Transmeta Corp.

[18] J. Banning et alTranslation consistency checking for modified target undions by com-
paring to original copyU.S. Patent 6594821, filed 30 Mar 2000. Assn. Transmeta Corp.

183

http://www.xensource.com/xen/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://www.cl.cam.ac.uk/netos/papers/2004-xen-ols.pdf
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://www.cl.cam.ac.uk/netos/papers/2004-xen-ols.pdf
http://www.cl.cam.ac.uk/netos/papers/2006-xen-fosdem.ppt
http://wiki.xensource.com/xenwiki/XenIntro
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/performance.html
http://www.qemu.org/qemu-tech.html
http://bochs.sourceforge.net/
http://www.usenix.org/event/usenix01/sugerman/sugerman.pdf
http://www.simics.com
http://www.hotchips.org/archives/hc16/2_Mon/15_HC16_Sess4_Pres1_bw.pdf
http://download.intel.com/design/Pentium4/manuals/25366820.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

[19] K. Ebcioglu et al.Dynamic Binary Translation and OptimizatiolEEE Trans. Computers,
June 2001.

[20] K. Ebcioglu, E. AltmanDAISY: Dynamic Compilation for 100% Architectural Combdtty.
IBM Research Report RC 20538, 5 Aug 1996.

[21] E. Altman, K. EbciogluDAISY Dynamic Binary Translation Softwa&oftware Manual for
DAISY Open Source Release, 2000.

184

	I PTLsim User's Guide
	Introducing PTLsim
	Introducing PTLsim
	History

	Getting Started
	Documentation Map
	Additional Resources

	PTLsim Architecture
	PTLsim Code Base
	Code Base Overview
	Common Libraries and Logic Design APIs
	General Purpose Macros
	Super Standard Template Library (SuperSTL)
	Logic Standard Template Library (LogicSTL)
	Miscellaneous Code

	x86 Instructions and Micro-Ops (uops)
	Micro-Ops (uops) and TransOps
	Load-Execute-Store Operations
	Operation Sizes
	Flags Management and Register Renaming
	x86-64
	Unaligned Loads and Stores
	Repeated String Operations
	Checks and SkipBlocks
	Shifts and Rotates
	SSE Support
	x87 Floating Point
	Floating Point Unavailable Exceptions
	Assists

	Decoder Architecture and Basic Block Cache
	Basic Block Cache
	Identifying Basic Blocks
	Invalid Translations
	Self Modifying Code
	Memory Management of the Basic Block Cache

	PTLsim Support Subsystems
	Uop Implementations
	Configuration Parser
	Memory Manager
	Memory Pools
	Garbage Collection and Reclaim Mechanism

	Statistics Collection and Analysis
	PTLsim Statistics Data Store
	Introduction
	Node Attributes
	Configuration Options

	PTLstats: Statistics Analysis and Graphing Tools
	Snapshot Selection
	Working with Statistics Trees: Collection, Averaging and Summing
	Traversal and Printing Options
	Table Generation
	Bargraph Generation

	Histogram Generation

	Benchmarking Techniques
	Trigger Mode and other PTLsim Calls From User Code
	Notes on Benchmarking Methodology and ``IPC''
	Simulation Warmup Periods
	Sequential Mode

	II PTLsim Classic: Userspace Linux Simulation
	Getting Started with PTLsim
	Building PTLsim
	Running PTLsim
	Configuration Options
	Logging Options
	Event Log Ring Buffer
	Simulation Start Points
	Simulation Stop Points
	Statistics Collection

	PTLsim Classic Internals
	Low Level Startup and Injection
	Startup on x86-64
	Startup on 32-bit x86

	Simulator Startup
	Address Space Simulation
	Debugging Hints
	Timing Issues
	External Signals and PTLsim

	III PTLsim/X: Full System SMP/SMT Simulation
	Background
	Virtual Machines and Full System Simulation
	Xen Overview

	Getting Started with PTLsim/X
	Building PTLsim/X
	Running PTLsim
	Booting Linux under PTLsim
	Running Simulations: PTLctl
	PTLsim/X Options
	Live Updates of Configuration Options
	Command Scripts
	Working with Checkpoints
	The Nature of Time
	Other Options

	PTLsim/X Architecture Details
	Basic PTLsim/X Components
	Xen Modifications
	PTLsim Monitor (PTLmon)

	PTLsim Core
	Implementation Details
	Page Translation
	Exceptions
	System Calls and Hypercalls
	Event Channels
	Privileged Instruction Emulation

	PTLcalls
	Event Trace Mode
	Multiprocessor Support

	IV Out of Order Processor Model
	Introduction
	Out Of Order Core Features
	Processor Contexts
	PTLsim Machine/Core/Thread Class Hierarchy

	Out Of Order Core Overview
	Event Log Ring Buffer

	Fetch Stage
	Instruction Fetching and the Basic Block Cache
	Fetch Queue

	Frontend and Key Structures
	Resource Allocation
	Reorder Buffer Entries
	ROB States

	Physical Registers
	Physical Registers
	Physical Register File
	Physical Register States

	Load Store Queue Entries
	Register Renaming
	External State

	Frontend Stages

	Scheduling, Dispatch and Issue
	Clustering and Issue Queue Configuration
	Cluster Selection
	Issue Queue Structure and Operation
	Implementation
	Other Designs

	Issue

	Speculation and Recovery
	Misspeculation Cases
	Redispatch
	Redispatch Process
	Deadlock Recovery
	Statistical Counters

	Annulment
	Branch Mispredictions
	Annulment Process

	Load Issue
	Address Generation
	Store Queue Check and Store Dependencies
	Data Extraction
	Cache Miss Handling

	Stores
	Store to Store Forwarding and Merging
	Split Phase Stores
	Load Queue Search (Alias Check)
	Store Queue Search (Merge Check)

	Forwarding, Wakeup and Writeback
	Forwarding and the Clustered Bypass Network
	Writeback

	Commitment
	Introduction
	Atomicity of x86 instructions
	Commitment
	Additional Commit Actions for Full System Use
	Physical Register Recycling Complications
	Problem Scenarios
	Reference Counting
	Hardware Implementation

	Pipeline Flushes and Barriers

	Cache Hierarchy
	General Configurable Parameters
	Initiating a Cache Miss
	Filling a Cache Miss
	Translation Lookaside Buffers

	Branch Prediction
	Introduction
	Conditional Branch Predictor
	Branch Target Buffer
	Return Address Stack

	V Appendices
	PTLsim uop Reference
	Performance Counters
	General
	Summary
	Simulator
	Decoder
	Out of Order Core
	Cache Subsystem
	External Events

